Reelin mRNA Expression During Mouse Brain Development

Reelin mRNA Expression During Mouse Brain Development Using in situ hybridization, expression of the mRNA for reelin, the gene most probably responsible for the reeler trait, was studied during mouse brain development. from embryonic day 13 to maturity. The highest level of expression was found in Cajal‐Retzius neurons, while a high signal was also seen in the olfactory bulb, the external granular layer of the cerebellum and, particularly at early developmental stages, in hypothalamic differentiation fields, tectum and spinal cord. A moderate to low level of expression was found in the septa1 area, striatal fields, habenular nuclei, some thalamic nuclei, particularly the lateral geniculate, the retina and some nuclei of the reticular formation in the central field of the medulla. Paradoxically, no reelin expression was detected in radial glial cells, the cortical plate, Purkinje cells, inferior olivary neurons and many other areas that are characteristically abnormal in reeler mutant mice. Together with other preliminary studies, the present observations suggest that the action of reelin is indirect, possibly mediated by the extracellular matrix. Most of the data can be explained by supposing that reelin is a cell‐repulsive molecule which prevents migrating neurons from invading reelin‐rich areas, and thus facilitates the deployment of radial glial cell processes and the formation of early architectonic patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Reelin mRNA Expression During Mouse Brain Development

Loading next page...
 
/lp/wiley/reelin-mrna-expression-during-mouse-brain-development-sqXYwoG56c
Publisher
Wiley
Copyright
Copyright © 1997 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
DOI
10.1111/j.1460-9568.1997.tb01456.x
Publisher site
See Article on Publisher Site

Abstract

Using in situ hybridization, expression of the mRNA for reelin, the gene most probably responsible for the reeler trait, was studied during mouse brain development. from embryonic day 13 to maturity. The highest level of expression was found in Cajal‐Retzius neurons, while a high signal was also seen in the olfactory bulb, the external granular layer of the cerebellum and, particularly at early developmental stages, in hypothalamic differentiation fields, tectum and spinal cord. A moderate to low level of expression was found in the septa1 area, striatal fields, habenular nuclei, some thalamic nuclei, particularly the lateral geniculate, the retina and some nuclei of the reticular formation in the central field of the medulla. Paradoxically, no reelin expression was detected in radial glial cells, the cortical plate, Purkinje cells, inferior olivary neurons and many other areas that are characteristically abnormal in reeler mutant mice. Together with other preliminary studies, the present observations suggest that the action of reelin is indirect, possibly mediated by the extracellular matrix. Most of the data can be explained by supposing that reelin is a cell‐repulsive molecule which prevents migrating neurons from invading reelin‐rich areas, and thus facilitates the deployment of radial glial cell processes and the formation of early architectonic patterns.

Journal

European Journal of NeuroscienceWiley

Published: May 1, 1997

References

  • A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments
    Bar, Bar; Lambert de Rouvroit, Lambert de Rouvroit; Krizman, Krizman; Royaux, Royaux; Demoncourt, Demoncourt; Ruelle, Ruelle; Beckers, Beckers; Goffinet, Goffinet
  • Mechanisms of cortical development: a view from mutations in mice
    Caviness, Caviness; Rakic, Rakic

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off