Recent Progress in Porous Graphene and Reduced Graphene Oxide‐Based Nanomaterials for Electrochemical Energy Storage Devices

Recent Progress in Porous Graphene and Reduced Graphene Oxide‐Based Nanomaterials for... Graphene‐based nanocomposites are characterized by high mechanical strength, excellent electrical conductivity, and outstanding thermal and chemical stability. Additionally, the combination of versatile functionalization chemistry and simplicity of large‐scale synthesis makes graphene ideal for electrode materials for energy storage devices. To improve the electrochemical performance even further, recent research has focused on the preparation of porous graphene structures, either by creating holes in the graphene sheets or by assembling them into a 3D porous framework. Porous graphene and reduced graphene oxide allow for rapid ion diffusion and display high real surface area. In this review paper, the conventional methods for the preparation of porous graphene are summarized and recent progress in porous graphene‐based nanomaterials for electrochemical energy storage devices is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Interfaces Wiley

Recent Progress in Porous Graphene and Reduced Graphene Oxide‐Based Nanomaterials for Electrochemical Energy Storage Devices

Loading next page...
 
/lp/wiley/recent-progress-in-porous-graphene-and-reduced-graphene-oxide-based-AJrbVRpadN
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
2196-7350
eISSN
2196-7350
D.O.I.
10.1002/admi.201701212
Publisher site
See Article on Publisher Site

Abstract

Graphene‐based nanocomposites are characterized by high mechanical strength, excellent electrical conductivity, and outstanding thermal and chemical stability. Additionally, the combination of versatile functionalization chemistry and simplicity of large‐scale synthesis makes graphene ideal for electrode materials for energy storage devices. To improve the electrochemical performance even further, recent research has focused on the preparation of porous graphene structures, either by creating holes in the graphene sheets or by assembling them into a 3D porous framework. Porous graphene and reduced graphene oxide allow for rapid ion diffusion and display high real surface area. In this review paper, the conventional methods for the preparation of porous graphene are summarized and recent progress in porous graphene‐based nanomaterials for electrochemical energy storage devices is discussed.

Journal

Advanced Materials InterfacesWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off