Access the full text.
Sign up today, get DeepDyve free for 14 days.
The application of renewable energy conversion devices is considered as one of the effective ways to alleviate the energy shortage and environmental pollution. Designing electrocatalysts with excellent performance and affordable price is promising to accelerate the reaction process and large‐scale application. At present, ruthenium (Ru)‐based nanomaterials have shown similar catalytic activity but superior price demand compared to commercial Pt/C. This undoubtedly makes Ru‐based nanomaterials a perfect candidate to replace advanced Pt catalysts. Significant progress is made in the rational design of Ru‐based electrocatalysts, but an in‐depth understanding of the engineering strategies and induced effects is still at an early stage. This review summarizes the modification strategies for enhancing the catalytic activity of Ru, including surface structure, metal element, nonmetal element, size, bimetallic oxides, and heterostructure engineering strategies. Then the induced electronic modulation effects generated by the intramolecular and intermolecular of the Ru‐based nanomaterials are elucidated. Further, the application progress of engineered Ru‐based nanomaterials for hydrogen and oxygen conversion reactions is highlighted, and the correlations of engineering strategies, catalytic activity, and reaction pathways are elaborated. Finally, challenges and prospects are presented for the future development and practical application of Ru‐based nanomaterials.
Advanced Energy Materials – Wiley
Published: Nov 1, 2022
Keywords: energy conversion reactions; engineering strategies; induced effects; Ru‐based materials
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.