Reaction‐induced phase separation in hexamethylene diisocyanate‐based poly(propylene oxide)/poly(ethylene oxide) bi‐soft segment oligomers

Reaction‐induced phase separation in hexamethylene diisocyanate‐based poly(propylene... Oligomeric bi‐soft segment isocyanate‐terminated polyurethanes (ITPUs) are semi‐finished materials crucial for the synthesis of various PU products like foams, thermoplastic parts, dispersions or elastomers. Incompatibilities and thus phase separation phenomena play an essential role in tailoring the properties of the final products. Therefore, a detailed knowledge of these phenomena is mandatory in order to design products with properties meeting the requirements of a given application. In this study the reaction‐induced phase separation during the formation of ITPUs by application of two partially miscible soft segments is presented. The physicochemical basics of this process as well as the extent of the resulting phase separation are discussed on the basis of the initial phase diagram of the reactants. Reaction monitoring by NCO content titration and UV–visible spectroscopy reveals a dependency between the onset of phase separation and conversion. It is found that an increase of the initial content of hexamethylene diisocyanate delays the onset of phase separation. Differential scanning calorimetry reveals further that the phase separation is a direct consequence of the incompatibility of the soft segments. Overall, the findings support the hypothesis that the mechanism and the extent of phase separation are closely related to the ternary phase diagram of the reactants. © 2018 Society of Chemical Industry http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer International Wiley

Reaction‐induced phase separation in hexamethylene diisocyanate‐based poly(propylene oxide)/poly(ethylene oxide) bi‐soft segment oligomers

Loading next page...
 
/lp/wiley/reaction-induced-phase-separation-in-hexamethylene-diisocyanate-based-aj6zf0sfU6
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Society of Chemical Industry
ISSN
0959-8103
eISSN
1097-0126
D.O.I.
10.1002/pi.5539
Publisher site
See Article on Publisher Site

Abstract

Oligomeric bi‐soft segment isocyanate‐terminated polyurethanes (ITPUs) are semi‐finished materials crucial for the synthesis of various PU products like foams, thermoplastic parts, dispersions or elastomers. Incompatibilities and thus phase separation phenomena play an essential role in tailoring the properties of the final products. Therefore, a detailed knowledge of these phenomena is mandatory in order to design products with properties meeting the requirements of a given application. In this study the reaction‐induced phase separation during the formation of ITPUs by application of two partially miscible soft segments is presented. The physicochemical basics of this process as well as the extent of the resulting phase separation are discussed on the basis of the initial phase diagram of the reactants. Reaction monitoring by NCO content titration and UV–visible spectroscopy reveals a dependency between the onset of phase separation and conversion. It is found that an increase of the initial content of hexamethylene diisocyanate delays the onset of phase separation. Differential scanning calorimetry reveals further that the phase separation is a direct consequence of the incompatibility of the soft segments. Overall, the findings support the hypothesis that the mechanism and the extent of phase separation are closely related to the ternary phase diagram of the reactants. © 2018 Society of Chemical Industry

Journal

Polymer InternationalWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off