Rational Design of Perylenediimide‐Substituted Triphenylethylene to Electron Transporting Aggregation‐Induced Emission Luminogens (AIEgens) with High Mobility and Near‐Infrared Emission

Rational Design of Perylenediimide‐Substituted Triphenylethylene to Electron Transporting... Organic materials with both high electron mobility and strong solid‐state emission are rare although for their importance to advanced organic optoelectronics. In this paper, triphenylethylenes with varying number of perylenediimide (PDI) unit (TriPE‐nPDIs, n = 1−3) are synthesized and their optical and charge‐transporting properties are systematically investigated. All the molecules exhibit strong solid‐stated near infrared (NIR) emission and some of them exhibit aggregation‐enhanced emission characteristics. Organic field‐effect transistors (OFETs) using TriPE‐nPDIs are fabricated. TriPE‐3PDI shows the best performance with maximum quantum yield of ≈30% and optimized electron mobility of over 0.01 cm2 V−1 s−1, which are the highest values among aggregation‐induced emission luminogens with NIR emissions reported so far. Photophysical property investigation and theoretical calculation indicate that the molecular conformation plays an important role on the optical properties of TriPE‐nPDI, while the result from film microstructure study reveals that the film crystallinity influences greatly their OFET device performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

Rational Design of Perylenediimide‐Substituted Triphenylethylene to Electron Transporting Aggregation‐Induced Emission Luminogens (AIEgens) with High Mobility and Near‐Infrared Emission

Loading next page...
 
/lp/wiley/rational-design-of-perylenediimide-substituted-triphenylethylene-to-wpCL3mFXey
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
D.O.I.
10.1002/adfm.201705609
Publisher site
See Article on Publisher Site

Abstract

Organic materials with both high electron mobility and strong solid‐state emission are rare although for their importance to advanced organic optoelectronics. In this paper, triphenylethylenes with varying number of perylenediimide (PDI) unit (TriPE‐nPDIs, n = 1−3) are synthesized and their optical and charge‐transporting properties are systematically investigated. All the molecules exhibit strong solid‐stated near infrared (NIR) emission and some of them exhibit aggregation‐enhanced emission characteristics. Organic field‐effect transistors (OFETs) using TriPE‐nPDIs are fabricated. TriPE‐3PDI shows the best performance with maximum quantum yield of ≈30% and optimized electron mobility of over 0.01 cm2 V−1 s−1, which are the highest values among aggregation‐induced emission luminogens with NIR emissions reported so far. Photophysical property investigation and theoretical calculation indicate that the molecular conformation plays an important role on the optical properties of TriPE‐nPDI, while the result from film microstructure study reveals that the film crystallinity influences greatly their OFET device performance.

Journal

Advanced Functional MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial