Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review

Radiation damage relative to transmission electron microscopy of biological specimens at low... When biological specimens are irradiated by the electron beam in the electron microscope, the specimen structure is damaged as a result of molecular excitation, ionization, and subsequent chemical reactions. The radiation damage that occurs in the normal process of electron microscopy is known to present severe limitations for imaging high resolution detail in biological specimens. The question of radiation damage at low temperatures has therefore been investigated with the view in mind of reducing somewhat the rate at which damage occurs. The radiation damage protection found for small molecule (anhydrous) organic compounds is generally rather limited or even non‐existent. However, large molecule, hydrated materials show as much as a 10‐fold reduction at low temperature in the rate at which radiation damage occurs, relative to the damage rate at room temperature. In the case of hydrated specimens, therefore, low temperature electron microscopy offers an important advantage as part of the overall effort required in obtaining high resolution images of complex biological structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Microscopy Wiley

Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review

Loading next page...
 
/lp/wiley/radiation-damage-relative-to-transmission-electron-microscopy-of-X6UTQJ7dr1
Publisher
Wiley
Copyright
Copyright © 1978 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0022-2720
eISSN
1365-2818
DOI
10.1111/j.1365-2818.1978.tb01160.x
Publisher site
See Article on Publisher Site

Abstract

When biological specimens are irradiated by the electron beam in the electron microscope, the specimen structure is damaged as a result of molecular excitation, ionization, and subsequent chemical reactions. The radiation damage that occurs in the normal process of electron microscopy is known to present severe limitations for imaging high resolution detail in biological specimens. The question of radiation damage at low temperatures has therefore been investigated with the view in mind of reducing somewhat the rate at which damage occurs. The radiation damage protection found for small molecule (anhydrous) organic compounds is generally rather limited or even non‐existent. However, large molecule, hydrated materials show as much as a 10‐fold reduction at low temperature in the rate at which radiation damage occurs, relative to the damage rate at room temperature. In the case of hydrated specimens, therefore, low temperature electron microscopy offers an important advantage as part of the overall effort required in obtaining high resolution images of complex biological structures.

Journal

Journal of MicroscopyWiley

Published: Jan 1, 1978

References

  • Limitations to significant information in biological electron microscopy as a result of radiation damage
    Glaeser, R. M.
  • Irradiation changes in organic polymers at various accelerating voltages
    Kobayashi, K.; Sakaoku, K.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off