Query expansion based on statistical learning from code changes

Query expansion based on statistical learning from code changes Thesaurus‐based, code‐related, and software‐specific query expansion techniques are the main contributions in free‐form query search. However, these techniques still could not put the most relevant query result in the first position because they lack the ability to infer the expansion words that represent the user needs based on a given query. In this paper, we discover that code changes can imply what users want and propose a novel query expansion technique with code changes (QECC). It exploits (changes, contexts) pairs from changed methods. On the basis of statistical learning from pairs, it can infer code changes for a given query. In this way, it expands a query with code changes and recommends the query results that meet actual needs perfectly. In addition, we implement InstaRec to perform QECC and evaluate it with 195 039 change commits from GitHub and our code tracker. The results show that QECC can improve the precision of 3 code search algorithms (ie, IR, Portfolio, and VF) by up to 52% to 62% and outperform the state‐of‐the‐art query expansion techniques (ie, query expansion based on crowd knowledge and CodeHow) by 13% to 16% when the top 1 result is inspected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Software:Practice and Experience Wiley

Query expansion based on statistical learning from code changes

Loading next page...
 
/lp/wiley/query-expansion-based-on-statistical-learning-from-code-changes-ASrcraXIlr
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0038-0644
eISSN
1097-024X
D.O.I.
10.1002/spe.2574
Publisher site
See Article on Publisher Site

Abstract

Thesaurus‐based, code‐related, and software‐specific query expansion techniques are the main contributions in free‐form query search. However, these techniques still could not put the most relevant query result in the first position because they lack the ability to infer the expansion words that represent the user needs based on a given query. In this paper, we discover that code changes can imply what users want and propose a novel query expansion technique with code changes (QECC). It exploits (changes, contexts) pairs from changed methods. On the basis of statistical learning from pairs, it can infer code changes for a given query. In this way, it expands a query with code changes and recommends the query results that meet actual needs perfectly. In addition, we implement InstaRec to perform QECC and evaluate it with 195 039 change commits from GitHub and our code tracker. The results show that QECC can improve the precision of 3 code search algorithms (ie, IR, Portfolio, and VF) by up to 52% to 62% and outperform the state‐of‐the‐art query expansion techniques (ie, query expansion based on crowd knowledge and CodeHow) by 13% to 16% when the top 1 result is inspected.

Journal

Software:Practice and ExperienceWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off