‘Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid‐latitude site’

‘Quantifying the effects of forest canopy cover on net snow accumulation at a continental,... Although many studies have investigated the effects of forest cover on streamflow and runoff, and several have examined the effects of canopy density on snowpack accumulation, the impacts of forest canopy density on spatial patterns of snowmelt input to catchments remain relatively underquantified. We performed an intensive snow depth and density survey during maximum accumulation in a mid‐latitude montane environment in northern New Mexico, taking 900 snow depth measurements and excavating six snow pits across a continuum of canopy densities. Snow water equivalent (SWE) data are correlated with forest canopy density (R2 = 0·21, p < 0·0001), with maximum snow accumulation in forests with density between 25 and 40%. Forest edges are shown to be highly influential on patterns of snow depth, with unforested areas shaded by forest to their immediate south holding approximately 25% deeper snow than either large open areas or densely forested areas. This indicates that the combination of canopy influences on throughfall and snowpack shading are key processes underlying snow distribution in the high solar load environments typical of mountainous, mid‐latitude areas. We further show that statistical models of snow distribution are improved with the addition of remotely sensed forest canopy information (R2 increased in 10 of 11 cases, deviance lowered in 9 of 11 cases), making these findings broadly relevant for improving estimation of water resources, predicting the ecohydrological implications of vegetation and climate change, and informing integrated forest and water resources management. Copyright © 2009 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecohydrology Wiley

‘Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid‐latitude site’

Loading next page...
 
/lp/wiley/quantifying-the-effects-of-forest-canopy-cover-on-net-snow-wS7Ij5qEsv
Publisher
Wiley
Copyright
Copyright © 2009 John Wiley & Sons, Ltd.
ISSN
1936-0584
eISSN
1936-0592
D.O.I.
10.1002/eco.45
Publisher site
See Article on Publisher Site

Abstract

Although many studies have investigated the effects of forest cover on streamflow and runoff, and several have examined the effects of canopy density on snowpack accumulation, the impacts of forest canopy density on spatial patterns of snowmelt input to catchments remain relatively underquantified. We performed an intensive snow depth and density survey during maximum accumulation in a mid‐latitude montane environment in northern New Mexico, taking 900 snow depth measurements and excavating six snow pits across a continuum of canopy densities. Snow water equivalent (SWE) data are correlated with forest canopy density (R2 = 0·21, p < 0·0001), with maximum snow accumulation in forests with density between 25 and 40%. Forest edges are shown to be highly influential on patterns of snow depth, with unforested areas shaded by forest to their immediate south holding approximately 25% deeper snow than either large open areas or densely forested areas. This indicates that the combination of canopy influences on throughfall and snowpack shading are key processes underlying snow distribution in the high solar load environments typical of mountainous, mid‐latitude areas. We further show that statistical models of snow distribution are improved with the addition of remotely sensed forest canopy information (R2 increased in 10 of 11 cases, deviance lowered in 9 of 11 cases), making these findings broadly relevant for improving estimation of water resources, predicting the ecohydrological implications of vegetation and climate change, and informing integrated forest and water resources management. Copyright © 2009 John Wiley & Sons, Ltd.

Journal

EcohydrologyWiley

Published: Jun 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off