Quantification of melatonin in phototrophic organisms

Quantification of melatonin in phototrophic organisms Abstract: Melatonin, the chief secretory product of the vertebrate pineal gland is also known to occur in numerous photoautotrophic organisms. The indoleamine is suspected to act as a transducer of photoperiodic information and/or to participate in antioxidative protection. In higher plants and other photoautotrophic organisms, contradictory results for melatonin content for samples from the same species show that further improvement of methods for reliable quantification is required. In the present study, melatonin was quantified in tomatoes, ginger and the marine green macroalga, Ulva lactuca, after extraction with three different extraction methods based on ether, acetone or perchloric acid. Melatonin was determined by enzyme‐linked immunosorbent assay (ELISA) in high‐performance liquid chromatography (HPLC)‐purified extracts. The same HPLC system used for purification of extracts was used for parallel quantifications after derivatization of melatonin under alkaline conditions in the presence of hydrogen peroxide (HPLC‐PD). Both quantification methods gave similar results with a high correlation (f(x) = 0.99x + 3.01; R2 = 0.99). In ginger, the melatonin concentration was below 5 pg/g (fresh weight, f.w.), whereas in tomatoes about 1200 pg/g (f.w.) were found, and in the green alga, U. lactuca, approximately 12 pg/g (f.w.). Taking into account the recovery rates for synthetic melatonin added prior to extraction, no substantial differences were observed in melatonin quantification between different extraction methods. The demonstrated methods based on HPLC purification and subsequent quantification by ELISA and HPLC‐PD allow highly sensitive melatonin determinations in diverse photoautotrophic organisms with a low risk of overestimations by false‐positive results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Pineal Research Wiley

Quantification of melatonin in phototrophic organisms

Journal of Pineal Research, Volume 41 (2) – Sep 1, 2006

Loading next page...
 
/lp/wiley/quantification-of-melatonin-in-phototrophic-organisms-amqfdGOiom
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0742-3098
eISSN
1600-079X
DOI
10.1111/j.1600-079X.2006.00348.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Melatonin, the chief secretory product of the vertebrate pineal gland is also known to occur in numerous photoautotrophic organisms. The indoleamine is suspected to act as a transducer of photoperiodic information and/or to participate in antioxidative protection. In higher plants and other photoautotrophic organisms, contradictory results for melatonin content for samples from the same species show that further improvement of methods for reliable quantification is required. In the present study, melatonin was quantified in tomatoes, ginger and the marine green macroalga, Ulva lactuca, after extraction with three different extraction methods based on ether, acetone or perchloric acid. Melatonin was determined by enzyme‐linked immunosorbent assay (ELISA) in high‐performance liquid chromatography (HPLC)‐purified extracts. The same HPLC system used for purification of extracts was used for parallel quantifications after derivatization of melatonin under alkaline conditions in the presence of hydrogen peroxide (HPLC‐PD). Both quantification methods gave similar results with a high correlation (f(x) = 0.99x + 3.01; R2 = 0.99). In ginger, the melatonin concentration was below 5 pg/g (fresh weight, f.w.), whereas in tomatoes about 1200 pg/g (f.w.) were found, and in the green alga, U. lactuca, approximately 12 pg/g (f.w.). Taking into account the recovery rates for synthetic melatonin added prior to extraction, no substantial differences were observed in melatonin quantification between different extraction methods. The demonstrated methods based on HPLC purification and subsequent quantification by ELISA and HPLC‐PD allow highly sensitive melatonin determinations in diverse photoautotrophic organisms with a low risk of overestimations by false‐positive results.

Journal

Journal of Pineal ResearchWiley

Published: Sep 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off