# Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability

Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due... In quantitative uncertainty analysis, it is essential to define rigorously the endpoint or target of the assessment. Two distinctly different approaches using Monte Carlo methods are discussed: (1) the end point is a fixed but unknown value (e.g., the maximally exposed individual, the average individual, or a specific individual) or (2) the end point is an unknown distribution of values (e.g., the variability of exposures among unspecified individuals in the population). In the first case, values are sampled at random from distributions representing various “degrees of belief” about the unknown “fixed” values of the parameters to produce a distribution of model results. The distribution of model results represents a subjective confidence statement about the true but unknown assessment end point. The important input parameters are those that contribute most to the spread in the distribution of the model results. In the second case, Monte Carlo calculations are performed in two dimensions producing numerous alternative representations of the true but unknown distribution. These alternative distributions permit subject confidence statements to be made from two perspectives: (1) for the individual exposure occurring at a specified fractile of the distribution or (2) for the fractile of the distribution associated with a specified level of individual exposure. The relative importance of input parameters will depend on the fractile or exposure level of interest. The quantification of uncertainty for the simulation of a true but unknown distribution of values represents the state‐of‐the‐art in assessment modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Risk Analysis Wiley

# Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability

Risk Analysis, Volume 14 (5) – Oct 1, 1994
6 pages

/lp/wiley/propagation-of-uncertainty-in-risk-assessments-the-need-to-distinguish-KeBDfnxyiH
Publisher
Wiley
ISSN
0272-4332
eISSN
1539-6924
D.O.I.
10.1111/j.1539-6924.1994.tb00281.x
Publisher site
See Article on Publisher Site

### Abstract

In quantitative uncertainty analysis, it is essential to define rigorously the endpoint or target of the assessment. Two distinctly different approaches using Monte Carlo methods are discussed: (1) the end point is a fixed but unknown value (e.g., the maximally exposed individual, the average individual, or a specific individual) or (2) the end point is an unknown distribution of values (e.g., the variability of exposures among unspecified individuals in the population). In the first case, values are sampled at random from distributions representing various “degrees of belief” about the unknown “fixed” values of the parameters to produce a distribution of model results. The distribution of model results represents a subjective confidence statement about the true but unknown assessment end point. The important input parameters are those that contribute most to the spread in the distribution of the model results. In the second case, Monte Carlo calculations are performed in two dimensions producing numerous alternative representations of the true but unknown distribution. These alternative distributions permit subject confidence statements to be made from two perspectives: (1) for the individual exposure occurring at a specified fractile of the distribution or (2) for the fractile of the distribution associated with a specified level of individual exposure. The relative importance of input parameters will depend on the fractile or exposure level of interest. The quantification of uncertainty for the simulation of a true but unknown distribution of values represents the state‐of‐the‐art in assessment modeling.

### Journal

Risk AnalysisWiley

Published: Oct 1, 1994

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create folders to

Export folders, citations