Proof of Equivalent Catalytic Functionality upon Photon‐Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation

Proof of Equivalent Catalytic Functionality upon Photon‐Induced and Thermal Activation of... In this study, evidence is provided that isolated surface vanadia (VO4) species on SiO2 can similarly act as a thermal heterogeneous catalyst and as a heterogeneous photocatalyst. Structurally identical surface VO4 species catalyze the selective oxidation of methanol both by thermal activation and by UV‐light induction. Selectivity to formaldehyde appears to be unity. For the photocatalytic reaction at room temperature, formaldehyde desorption is rate limiting. With larger agglomerates or V2O5 nanoparticles, on the contrary, only the thermal reaction is feasible. This is tentatively attributed to the different positions of electronic states (HOMO/LUMO, valence/conduction band) on the electrochemical energy scale owing to the quantum size effect. Besides providing new fundamental insight into the mode of action of nanosized photocatalysts, our results demonstrate that tuning the photocatalytic reactivity of supported transition‐metal oxides by adjusting the degree of agglomeration is feasible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ChemCatChem (Electronic) Wiley

Proof of Equivalent Catalytic Functionality upon Photon‐Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation

Loading next page...
 
/lp/wiley/proof-of-equivalent-catalytic-functionality-upon-photon-induced-and-5lTi5eNL0H
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1867-3880
eISSN
1867-3899
D.O.I.
10.1002/cctc.201800311
Publisher site
See Article on Publisher Site

Abstract

In this study, evidence is provided that isolated surface vanadia (VO4) species on SiO2 can similarly act as a thermal heterogeneous catalyst and as a heterogeneous photocatalyst. Structurally identical surface VO4 species catalyze the selective oxidation of methanol both by thermal activation and by UV‐light induction. Selectivity to formaldehyde appears to be unity. For the photocatalytic reaction at room temperature, formaldehyde desorption is rate limiting. With larger agglomerates or V2O5 nanoparticles, on the contrary, only the thermal reaction is feasible. This is tentatively attributed to the different positions of electronic states (HOMO/LUMO, valence/conduction band) on the electrochemical energy scale owing to the quantum size effect. Besides providing new fundamental insight into the mode of action of nanosized photocatalysts, our results demonstrate that tuning the photocatalytic reactivity of supported transition‐metal oxides by adjusting the degree of agglomeration is feasible.

Journal

ChemCatChem (Electronic)Wiley

Published: Jan 7, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off