Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve‐guided collagen scaffold through increasing alternatively activated macrophage polarization

Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on... Mesenchymal stem cells (MSCs) are characterized by multidifferentiation and immunoregulatory potential and have been used in the treatment of spinal cord injury (SCI), but direct transplantation may limit effectiveness due to their quick diffusion. The role of macrophages in healing is being increasingly recognized because of their ability to polarize into pro‐ and anti‐inflammatory phenotypes. In the present study, nerve‐guide collagen scaffold (CS) combined with rat MSCs was developed. After CS was confirmed to minimize MSC distribution in vivo by positron emission tomography (PET) imaging, the repair capacity of combined implantation of CS and MSCs and the effect on classically activated macrophage/alternatively activated macrophage (M2) polarization was assessed in a hemisected SCI rat model. In vivo studies showed that, compared to the control group, the rats in the combined implantation group exhibited more significant recovery of nerve function evidenced by the 21‐point Basso–Beattie–Bresnahan score and footprint analysis. Morphological staining showed less macrophage infiltration, apoptosis and glial fibrillary acidic protein, and more neurofilaments, and the fibres were guided to grow through the implant. More M2 were observed in the combined implantation group. The data suggest that the combined implantation could support MSCs to play a protective role of SCI, not only through inhibiting chronic scar formation and providing linear guidance for the nerve, but also benefitting M2 polarization to form an anti‐inflammatory environment. Thus, the combination of biomaterial and MSCs might be a prominent therapeutic treatment for SCI. Copyright © 2016 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve‐guided collagen scaffold through increasing alternatively activated macrophage polarization

Journal of Tissue Engineering and Regenerative Medicine , Volume 12 (3) – Jan 1, 2018

Loading next page...
 
/lp/wiley/promotion-of-neurological-recovery-in-rat-spinal-cord-injury-by-ZKsDNPfCNF
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2358
Publisher site
See Article on Publisher Site

Abstract

Mesenchymal stem cells (MSCs) are characterized by multidifferentiation and immunoregulatory potential and have been used in the treatment of spinal cord injury (SCI), but direct transplantation may limit effectiveness due to their quick diffusion. The role of macrophages in healing is being increasingly recognized because of their ability to polarize into pro‐ and anti‐inflammatory phenotypes. In the present study, nerve‐guide collagen scaffold (CS) combined with rat MSCs was developed. After CS was confirmed to minimize MSC distribution in vivo by positron emission tomography (PET) imaging, the repair capacity of combined implantation of CS and MSCs and the effect on classically activated macrophage/alternatively activated macrophage (M2) polarization was assessed in a hemisected SCI rat model. In vivo studies showed that, compared to the control group, the rats in the combined implantation group exhibited more significant recovery of nerve function evidenced by the 21‐point Basso–Beattie–Bresnahan score and footprint analysis. Morphological staining showed less macrophage infiltration, apoptosis and glial fibrillary acidic protein, and more neurofilaments, and the fibres were guided to grow through the implant. More M2 were observed in the combined implantation group. The data suggest that the combined implantation could support MSCs to play a protective role of SCI, not only through inhibiting chronic scar formation and providing linear guidance for the nerve, but also benefitting M2 polarization to form an anti‐inflammatory environment. Thus, the combination of biomaterial and MSCs might be a prominent therapeutic treatment for SCI. Copyright © 2016 John Wiley & Sons, Ltd.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off