Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve‐guided collagen scaffold through increasing alternatively activated macrophage polarization

Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on... Mesenchymal stem cells (MSCs) are characterized by multidifferentiation and immunoregulatory potential and have been used in the treatment of spinal cord injury (SCI), but direct transplantation may limit effectiveness due to their quick diffusion. The role of macrophages in healing is being increasingly recognized because of their ability to polarize into pro‐ and anti‐inflammatory phenotypes. In the present study, nerve‐guide collagen scaffold (CS) combined with rat MSCs was developed. After CS was confirmed to minimize MSC distribution in vivo by positron emission tomography (PET) imaging, the repair capacity of combined implantation of CS and MSCs and the effect on classically activated macrophage/alternatively activated macrophage (M2) polarization was assessed in a hemisected SCI rat model. In vivo studies showed that, compared to the control group, the rats in the combined implantation group exhibited more significant recovery of nerve function evidenced by the 21‐point Basso–Beattie–Bresnahan score and footprint analysis. Morphological staining showed less macrophage infiltration, apoptosis and glial fibrillary acidic protein, and more neurofilaments, and the fibres were guided to grow through the implant. More M2 were observed in the combined implantation group. The data suggest that the combined implantation could support MSCs to play a protective role of SCI, not only through inhibiting chronic scar formation and providing linear guidance for the nerve, but also benefitting M2 polarization to form an anti‐inflammatory environment. Thus, the combination of biomaterial and MSCs might be a prominent therapeutic treatment for SCI. Copyright © 2016 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve‐guided collagen scaffold through increasing alternatively activated macrophage polarization

Loading next page...
 
/lp/wiley/promotion-of-neurological-recovery-in-rat-spinal-cord-injury-by-ZKsDNPfCNF
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2358
Publisher site
See Article on Publisher Site

Abstract

Mesenchymal stem cells (MSCs) are characterized by multidifferentiation and immunoregulatory potential and have been used in the treatment of spinal cord injury (SCI), but direct transplantation may limit effectiveness due to their quick diffusion. The role of macrophages in healing is being increasingly recognized because of their ability to polarize into pro‐ and anti‐inflammatory phenotypes. In the present study, nerve‐guide collagen scaffold (CS) combined with rat MSCs was developed. After CS was confirmed to minimize MSC distribution in vivo by positron emission tomography (PET) imaging, the repair capacity of combined implantation of CS and MSCs and the effect on classically activated macrophage/alternatively activated macrophage (M2) polarization was assessed in a hemisected SCI rat model. In vivo studies showed that, compared to the control group, the rats in the combined implantation group exhibited more significant recovery of nerve function evidenced by the 21‐point Basso–Beattie–Bresnahan score and footprint analysis. Morphological staining showed less macrophage infiltration, apoptosis and glial fibrillary acidic protein, and more neurofilaments, and the fibres were guided to grow through the implant. More M2 were observed in the combined implantation group. The data suggest that the combined implantation could support MSCs to play a protective role of SCI, not only through inhibiting chronic scar formation and providing linear guidance for the nerve, but also benefitting M2 polarization to form an anti‐inflammatory environment. Thus, the combination of biomaterial and MSCs might be a prominent therapeutic treatment for SCI. Copyright © 2016 John Wiley & Sons, Ltd.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off