Probing the activity of a recombinant Zn2+‐transporting P‐type ATPase

Probing the activity of a recombinant Zn2+‐transporting P‐type ATPase P‐type ATPase proteins maintain cellular homeostasis and uphold critical concentration gradients by ATP‐driven ion transport across biological membranes. Characterization of single‐cycle dynamics by time‐resolved X‐ray scattering techniques in solution could resolve structural intermediates not amendable to for example crystallization or cryo‐electron microscopy sample preparation. To pave way for such time‐resolved experiments, we used biochemical activity measurements, Attenuated Total Reflectance (ATR) and time‐dependent Fourier‐Transform Infra‐Red (FTIR) spectroscopy to identify optimal conditions for activating a Zn2+‐transporting Type‐I ATPase from Shigella sonnei (ssZntA) at high protein concentration using caged ATP. The highest total activity was observed at a protein concentration of 25 mg/mL, at 310 K, pH 7, and required the presence of 20% (v/v) glycerol as stabilizing agent. Neither the presence of caged ATP nor increasing lipid‐to‐protein ratio affected the hydrolysis activity significantly. This work also paves way for characterization of recombinant metal‐transporting (Type‐I) ATPase mutants with medical relevance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biopolymers Wiley

Probing the activity of a recombinant Zn2+‐transporting P‐type ATPase

Loading next page...
 
/lp/wiley/probing-the-activity-of-a-recombinant-zn2-transporting-p-type-atpase-eAcmFZj1XZ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0006-3525
eISSN
1097-0282
D.O.I.
10.1002/bip.23087
Publisher site
See Article on Publisher Site

Abstract

P‐type ATPase proteins maintain cellular homeostasis and uphold critical concentration gradients by ATP‐driven ion transport across biological membranes. Characterization of single‐cycle dynamics by time‐resolved X‐ray scattering techniques in solution could resolve structural intermediates not amendable to for example crystallization or cryo‐electron microscopy sample preparation. To pave way for such time‐resolved experiments, we used biochemical activity measurements, Attenuated Total Reflectance (ATR) and time‐dependent Fourier‐Transform Infra‐Red (FTIR) spectroscopy to identify optimal conditions for activating a Zn2+‐transporting Type‐I ATPase from Shigella sonnei (ssZntA) at high protein concentration using caged ATP. The highest total activity was observed at a protein concentration of 25 mg/mL, at 310 K, pH 7, and required the presence of 20% (v/v) glycerol as stabilizing agent. Neither the presence of caged ATP nor increasing lipid‐to‐protein ratio affected the hydrolysis activity significantly. This work also paves way for characterization of recombinant metal‐transporting (Type‐I) ATPase mutants with medical relevance.

Journal

BiopolymersWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off