Pro‐myogenic and low‐oxygen culture increases expression of contractile smooth muscle markers in human fibroblasts

Pro‐myogenic and low‐oxygen culture increases expression of contractile smooth muscle markers... Smooth muscle cells (SMCs) are essential for tissue engineering strategies to fabricate organs such as blood vessels, the oesophagus and bladder, and to create disease models of these systems. In order for such therapies and models to be feasible, SMCs must be sourced effectively to enable production of large numbers of functional cells. In vitro, SMCs divide slowly and demonstrate short proliferative lifespans compared with other types of cells, including stem cells and fibroblasts, limiting the number of cells that can be derived from expansion in culture of a primary isolation. As such, it would be beneficial to better understand the factors underlying induction and maintenance of SMC phenotypes, in order to produce new sources of SMCs for tissue engineering and disease modelling. Here we report the ability of human dermal fibroblasts to display patterns of gene expression resembling contractile SMCs when cultured under conditions that are known to promote a contractile phenotype in SMCs, including culture on collagen IV, low‐serum culture, TGF‐β1 treatment and hypoxia. These factors drive expression of the myogenic transcription factor myocardin, as well as expression of several of its gene targets that are known contributors to contractile phenotype in SMCs, including smooth muscle alpha actin, calponin, and myosin heavy chain. Our results suggest that culture conditions associated with culture of SMCs may be sufficient to induce myogenic gene expression patterns and potential myogenic function in non‐muscle cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Pro‐myogenic and low‐oxygen culture increases expression of contractile smooth muscle markers in human fibroblasts

Loading next page...
 
/lp/wiley/pro-myogenic-and-low-oxygen-culture-increases-expression-of-SeqOQWfwIg
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2473
Publisher site
See Article on Publisher Site

Abstract

Smooth muscle cells (SMCs) are essential for tissue engineering strategies to fabricate organs such as blood vessels, the oesophagus and bladder, and to create disease models of these systems. In order for such therapies and models to be feasible, SMCs must be sourced effectively to enable production of large numbers of functional cells. In vitro, SMCs divide slowly and demonstrate short proliferative lifespans compared with other types of cells, including stem cells and fibroblasts, limiting the number of cells that can be derived from expansion in culture of a primary isolation. As such, it would be beneficial to better understand the factors underlying induction and maintenance of SMC phenotypes, in order to produce new sources of SMCs for tissue engineering and disease modelling. Here we report the ability of human dermal fibroblasts to display patterns of gene expression resembling contractile SMCs when cultured under conditions that are known to promote a contractile phenotype in SMCs, including culture on collagen IV, low‐serum culture, TGF‐β1 treatment and hypoxia. These factors drive expression of the myogenic transcription factor myocardin, as well as expression of several of its gene targets that are known contributors to contractile phenotype in SMCs, including smooth muscle alpha actin, calponin, and myosin heavy chain. Our results suggest that culture conditions associated with culture of SMCs may be sufficient to induce myogenic gene expression patterns and potential myogenic function in non‐muscle cells.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off