Access the full text.
Sign up today, get DeepDyve free for 14 days.
Aliaksandr Krukau, Oleg Vydrov, A. Izmaylov, G. Scuseria (2006)
Influence of the exchange screening parameter on the performance of screened hybrid functionals.The Journal of chemical physics, 125 22
J. Heyd, G. Scuseria, M. Ernzerhof (2003)
Hybrid functionals based on a screened Coulomb potentialJournal of Chemical Physics, 118
Taylor Juran, Manuel Smeu (2019)
TiSe2 cathode for beyond Li-ion batteriesJournal of Power Sources
Richard Noorden (2014)
The rechargeable revolution: A better batteryNature, 507
M. Yu, D. Trinkle (2010)
Accurate and efficient algorithm for Bader charge integration.The Journal of chemical physics, 134 6
Taylor Juran, Manuel Smeu (2017)
Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo6S8 cathode.Physical chemistry chemical physics : PCCP, 19 31
K. Leung, Y. Qi, K. Zavadil, Y. Jung, A. Dillon, A. Cavanagh, Sehee Lee, S. George (2011)
Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies.Journal of the American Chemical Society, 133 37
D. Tchitchekova, D. Monti, P. Johansson, F. Bardé, Anna Randon‐Vitanova, M. Palacín, A. Ponrouch (2017)
On the Reliability of Half-Cell Tests for Monovalent (Li+, Na+) and Divalent (Mg2+, Ca2+) Cation Based BatteriesJournal of The Electrochemical Society, 164
Changhee Lee, Y. Jeong, Paul Nogales, Hee-Youb Song, Y. Kim, R. Yin, S. Jeong (2019)
Electrochemical intercalation of Ca2+ ions into TiS2 in organic electrolytes at room temperatureElectrochemistry Communications
Xinpei Gao, Xu Liu, A. Mariani, G. Elia, M. Lechner, C. Streb, S. Passerini (2020)
Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytesEnergy and Environmental Science, 13
Eunho Cha, M. Patel, Ju-Hoon Park, Jeongwoo Hwang, Vish Prasad, Kyeongjae Cho, W. Choi (2018)
2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteriesNature Nanotechnology, 13
S. Jung, Young‐Kyu Han (2013)
How Do Li Atoms Pass through the Al2O3 Coating Layer during Lithiation in Li-ion Batteries?Journal of Physical Chemistry Letters, 4
G. Kresse, J. Furthmüller (1996)
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComputational Materials Science, 6
Kai Yan, Hyun‐Wook Lee, T. Gao, G. Zheng, Hongbin Yao, Haotian Wang, Zhenda Lu, Yu Zhou, Zheng Liang, Zhongfan Liu, S. Chu, Yi Cui (2014)
Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode.Nano letters, 14 10
Haesun Park, Yanjie Cui, Sanghyeon Kim, J. Vaughey, P. Zapol (2020)
Ca Cobaltites as Potential Cathode Materials for Rechargeable Ca-Ion Batteries: Theory and ExperimentThe Journal of Physical Chemistry C
M. Han, E. Gonzalo, Gurpreet Singh, T. Rojo (2015)
A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteriesEnergy and Environmental Science, 8
E. Kazyak, Kevin Wood, N. Dasgupta (2015)
Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface TreatmentsChemistry of Materials, 27
A. Ponrouch, M. Palacín (2018)
On the road toward calcium-based batteriesCurrent Opinion in Electrochemistry
G. Kresse, J. Hafner (1995)
Ab initio molecular dynamics for liquid metals.Physical review. B, Condensed matter, 47 1
J. Forero-Saboya, E. Marchante, R. Araujo, D. Monti, P. Johansson, A. Ponrouch (2019)
Cation Solvation and Physicochemical Properties of Ca Battery ElectrolytesThe Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 123
E. Peled, S. Menkin (2017)
Review—SEI: Past, Present and FutureJournal of The Electrochemical Society, 164
Tomohiro Tojo, Yosuke Sugiura, R. Inada, Y. Sakurai (2016)
Reversible Calcium Ion Batteries Using a Dehydrated Prussian Blue Analogue CathodeElectrochimica Acta, 207
P. Canepa, G. Gautam, Daniel Hannah, R. Malik, Miao Liu, K. Gallagher, K. Persson, G. Ceder (2017)
Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges.Chemical reviews, 117 5
A. Ponrouch, C. Frontera, F. Bardé, M. Palacín (2016)
Towards a calcium-based rechargeable battery.Nature materials, 15 2
S. Prabakar, K. Sohn, M. Pyo (2020)
Ca2+-Based Dual-Carbon Batteries in Ternary Ionic Liquid Electrolytes.ACS applied materials & interfaces
A. Ponrouch, D. Tchitchekova, C. Frontera, F. Bardé, M. Dompablo, M. Palacín (2016)
Assessing Si-based anodes for Ca-ion batteries: Electrochemical decalciation of CaSi2Electrochemistry Communications, 66
A. Kozen, Chuan-Fu Lin, A. Pearse, M. Schroeder, Xiaogang Han, Liangbing Hu, Sang-bok Lee, G. Rubloff, M. Noked (2015)
Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.ACS nano, 9 6
S. Jung, Hyung-Jin Kim, J. Choi, Young‐Kyu Han (2014)
Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion.Nano letters, 14 11
Shi Wu, Fan Zhang, Yongbing Tang (2018)
A Novel Calcium‐Ion Battery Based on Dual‐Carbon Configuration with High Working Voltage and Long Cycling LifeAdvanced Science, 5
D. Aurbach, R. Skaletsky, Y. Gofer (1991)
The Electrochemical Behavior of Calcium Electrodes in a Few Organic ElectrolytesJournal of The Electrochemical Society, 138
Daniel Davies, M. Verde, O. Mnyshenko, Y. Chen, R. Rajeev, Ying Meng, Graham Elliott (2018)
Combined economic and technological evaluation of battery energy storage for grid applicationsNature Energy, 4
S. Menkin, D. Golodnitsky, E. Peled (2009)
Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applicationsElectrochemistry Communications, 11
D. Monti, A. Ponrouch, R. Araujo, F. Bardé, P. Johansson, M. Palacín (2019)
Multivalent Batteries—Prospects for High Energy Density: Ca BatteriesFrontiers in Chemistry, 7
Polymer Mater
Jianli Cheng, Eric Sivonxay, K. Persson (2020)
Evaluation of Amorphous Oxide Coatings for High-voltage Li-ion Battery Applications using a First-Principles Framework.ACS applied materials & interfaces
Mehdi Shakourian-Fard, G. Kamath, S. Taimoory, John Trant (2019)
Calcium-Ion Batteries: Identifying Ideal Electrolytes for Next-Generation Energy Storage Using Computational AnalysisThe Journal of Physical Chemistry C
A. Ponrouch, J. Bitenc, R. Dominko, Niklas Lindahl, P. Johansson, M. Palacín (2019)
Multivalent rechargeable batteriesEnergy Storage Materials
Yue Gao, Zhifei Yan, J. Gray, Xin He, Daiwei Wang, Tianhang Chen, Qingquan Huang, Yuguang Li, Haiying Wang, Seong Kim, T. Mallouk, Donghai Wang (2019)
Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditionsNature Materials, 18
J. Perdew, Weitao Yang, K. Burke, Zeng-Hui Yang, E. Gross, M. Scheffler, G. Scuseria, T. Henderson, Igor Zhang, A. Ruzsinszky, Haowei Peng, Jianwei Sun, E. Trushin, A. Görling (2016)
Understanding band gaps of solids in generalized Kohn–Sham theoryProceedings of the National Academy of Sciences, 114
Lin Chen, J. Connell, A. Nie, Zhennan Huang, K. Zavadil, K. Klavetter, Yifei Yuan, Soroosh Sharifi‐Asl, R. Shahbazian‐Yassar, J. Libera, A. Mane, J. Elam (2017)
Lithium metal protected by atomic layer deposition metal oxide for high performance anodesJournal of Materials Chemistry, 5
Marta Cabello, Francisco Nacimiento, José González, G. Ortiz, R. Alcántara, P. Lavela, C. Pérez-Vicente, J. Tirado (2016)
Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode materialElectrochemistry Communications, 67
A. Black, A. Torres, C. Frontera, M. Palacín, M. Dompablo (2020)
Appraisal of calcium ferrites as cathodes for calcium rechargeable batteries: DFT, synthesis, characterization and electrochemistry of Ca4Fe9O17.Dalton transactions
Nianwu Li, Ya‐Xia Yin, Chunpeng Yang, Yu‐Guo Guo (2016)
An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal AnodesAdvanced Materials, 28
Joshua Young, Manuel Smeu (2018)
Ethylene Carbonate-Based Electrolyte Decomposition and Solid-Electrolyte Interphase Formation on Ca Metal Anodes.The journal of physical chemistry letters, 9 12
Meng Wang, Chunlei Jiang, Songquan Zhang, Xiaohe Song, Yongbing Tang, Hui‐Ming Cheng (2018)
Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltageNature Chemistry, 10
B. Liu, Ji‐Guang Zhang, Wu Xu (2018)
Advancing Lithium Metal BatteriesJoule, 2
B. Dunn, H. Kamath, J. Tarascon (2011)
Electrical Energy Storage for the Grid: A Battery of ChoicesScience, 334
M. Hayashi, H. Arai, H. Ohtsuka, Y. Sakurai (2003)
Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hostsJournal of Power Sources, 119
J. Forero-Saboya, C. Davoisne, R. Dedryvère, I. Yousef, P. Canepa, A. Ponrouch (2020)
Understanding the nature of the passivation layer enabling reversible calcium platingEnergy & Environmental Science
Nanzhong Wu, Wenjiao Yao, Xiaohe Song, Ge Zhang, Bingjie Chen, Jinhu Yang, Yongbing Tang (2019)
A Calcium‐Ion Hybrid Energy Storage Device with High Capacity and Long Cycling Life under Room TemperatureAdvanced Energy Materials, 9
Yang Liu, N. Hudak, D. Huber, S. Limmer, J. Sullivan, J. Huang (2011)
In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.Nano letters, 11 10
S. Pu, Chen Gong, Xiangwen Gao, Z. Ning, Sixie Yang, John-Joseph Marie, Boyang Liu, R. House, Gareth Hartley, Jun Luo, P. Bruce, A. Robertson (2020)
Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to DendritesACS Energy Letters
A. Urban, D. Seo, G. Ceder (2016)
Computational understanding of Li-ion batteries, 2
J. Hoz, Fernando Soto, P. Balbuena (2015)
Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion BatteriesJournal of Physical Chemistry C, 119
Prasanna Padigi, G. Goncher, David Evans, R. Solanki (2015)
Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteriesJournal of Power Sources, 273
Energy Mater
A. Melemed, Aliza Khurram, Betar Gallant (2020)
Current Understanding of Nonaqueous Electrolytes for Calcium-Based Batteries.Batteries & supercaps, 3 7
G. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, Willi Peters, J. Drillet, S. Passerini, R. Hahn (2016)
An Overview and Future Perspectives of Aluminum BatteriesAdvanced Materials, 28
P. Blöchl (1994)
Projector augmented-wave method.Physical review. B, Condensed matter, 50 24
S. Son, T. Gao, S. Harvey, K. Steirer, A. Stokes, A. Stokes, A. Norman, Chunsheng Wang, A. Cresce, K. Xu, C. Ban (2018)
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytesNature Chemistry, 10
Joshua Young, Peter Kulick, Taylor Juran, Manuel Smeu (2019)
Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode InterfacesACS Applied Energy Materials
J. Muldoon, Claudiu Bucur, T. Gregory (2014)
Quest for nonaqueous multivalent secondary batteries: magnesium and beyond.Chemical reviews, 114 23
G. Henkelman, Andri Arnaldsson, H. Jónsson (2006)
A fast and robust algorithm for Bader decomposition of charge densityComputational Materials Science, 36
Da Wang, Xiangwen Gao, Yuhui Chen, Liyu Jin, C. Kuss, P. Bruce (2018)
Plating and stripping calcium in an organic electrolyte.Nature materials, 17 1
Zhenpeng Yao, V. Hegde, Alán Aspuru-Guzik, C. Wolverton (2018)
Discovery of Calcium‐Metal Alloy Anodes for Reversible Ca‐Ion BatteriesAdvanced Energy Materials, 9
Manuel Smeu, Manuel Smeu, S. Hossain, Z. Wang, V. Timoshevskii, K. Bevan, K. Zaghib (2016)
Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ionsJournal of Power Sources, 306
Zhenyou Li, B. Vinayan, T. Diemant, R. Behm, M. Fichtner, Z. Zhao‐Karger (2020)
Rechargeable Calcium-Sulfur Batteries Enabled by an Efficient Borate-Based Electrolyte.Small
Jordan Brito, M. Geller (2019)
MolecularModern Pathology, 19
Xingfeng He, Yizhou Zhu, A. Epstein, Yifei Mo (2018)
Statistical variances of diffusional properties from ab initio molecular dynamics simulationsnpj Computational Materials, 4
S. Nosé (1984)
A unified formulation of the constant temperature molecular dynamics methodsJournal of Chemical Physics, 81
J. Perdew, K. Burke, M. Ernzerhof (1996)
Generalized Gradient Approximation Made Simple.Physical review letters, 77 18
Hongkyung Lee, D. Lee, YunKyoung Kim, Jung-Ki Park, Hee‐Tak Kim (2015)
A simple composite protective layer coating that enhances the cycling stability of lithium metal batteriesJournal of Power Sources, 284
Saeid Biria, Shreyas Pathreeker, F. Genier, I. Hosein (2020)
A Highly Conductive and Thermally Stable Ionic Liquid Gel Electrolyte for Calcium-Ion Batteries, 2
Saeid Biria, Shreyas Pathreeker, F. Genier, Hansheng Li, I. Hosein (2020)
Plating and Stripping Calcium at Room Temperature in an Ionic-Liquid Electrolyte, 3
Taylor Juran, Joshua Young, Manuel Smeu (2018)
Density Functional Theory Modeling of MnO2 Polymorphs as Cathodes for Multivalent Ion BatteriesJournal of Physical Chemistry C, 122
M. Adil, A. Sarkar, A. Roy, M. Panda, Abharana Nagendra, S. Mitra (2020)
Practical Aqueous Calcium-ion Battery Full-cells for Future Stationary Storage.ACS applied materials & interfaces
A. Rajagopal, J. Callaway (1973)
Inhomogeneous Electron GasPhysical Review B, 7
Xin‐Bing Cheng, Rui Zhang, Chen‐Zi Zhao, Qiang Zhang (2017)
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.Chemical reviews, 117 15
Calcium ion batteries are gaining attention as alternatives to lithium‐ion technology because they offer comparable properties at reduced cost and improved safety. However, progress has been limited because of the inability to efficiently and reversibly plate and strip Ca metal anodes in organic electrolytes. Moreover, the inorganic components of the solid‐electrolyte interphase (SEI) that form via decomposition of the electrolyte often do not allow for the diffusion of Ca ions. In this work, an approach combining density functional theory and ab initio molecular dynamics (AIMD) simulations is utilized to show that the use of a preformed artificial SEI layer of amorphous Al2O3 can potentially prevent electrolyte decomposition. First, Ca is shown to be able to intercalate into an amorphous Al2O3 layer (up to Ca1.5Al2O3) and diffuse through on a reasonable time scale. Through calculation of the density of states, the system is found to remain insulating up to the equilibrium stoichiometry. Finally, AIMD simulations with a realistic organic electrolyte environment are used to show that this calcinated Al2O3 layer completely prevents the decomposition of solvent molecules. This approach can provide a route to efficient rechargeable Ca ion batteries, paving the way for cheap large‐scale energy storage.
Advanced Theory and Simulations – Wiley
Published: Aug 1, 2021
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.