Preparing for an uncertain future: migrating shorebird response to past climatic fluctuations in the Prairie Potholes

Preparing for an uncertain future: migrating shorebird response to past climatic fluctuations in... The Prairie Pothole Region, situated in the northern Great Plains, provides important stopover habitat for migratory shorebirds. During spring migration in the U.S. Prairie Potholes, 7.3 million shorebirds refuel in the region's myriad small, freshwater wetlands. Shorebirds use mudflats, shorelines, and ephemeral wetlands that are far more abundant in wet years than dry years. Generally, climate change is expected to bring warmer temperatures, seasonality shifts, more extreme events, and changes to precipitation. The impacts to wetland habitats are uncertain. In the Prairie Potholes, earlier spring onset and warmer temperatures may advance drying of wetlands or, alternately, increased spring precipitation may produce abundant shallow‐water habitats. To look at the availability of habitats for migratory shorebirds under different climate regimes, we compared habitat selection between a historic wet year and a dry year using binomial random‐effects models to describe local and landscape patterns. We found that in the dry year shorebirds were distributed more northerly and among more permanent wetlands, whereas in the wet year shorebirds were distributed more southerly and among more temporary wetlands. However, landscape‐scale variation played a larger role in the dry year. At the local wetland scale, shorebirds selected similarly between years—for shallower wetlands and wetlands in croplands. Overall, while shorebirds were sensitive to local habitat conditions, they exhibited a degree of adaptive capacity to climate change impacts by their ability to shift on the landscape. This indicates an avenue through which management decisions can enhance climate change resilience for these species given an uncertain future—by preserving shallow‐water wetlands in croplands throughout the landscape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecosphere Wiley

Preparing for an uncertain future: migrating shorebird response to past climatic fluctuations in the Prairie Potholes

Loading next page...
 
/lp/wiley/preparing-for-an-uncertain-future-migrating-shorebird-response-to-past-h0EzKr0S1n
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 The Ecological Society of America
ISSN
2150-8925
eISSN
2150-8925
D.O.I.
10.1002/ecs2.2095
Publisher site
See Article on Publisher Site

Abstract

The Prairie Pothole Region, situated in the northern Great Plains, provides important stopover habitat for migratory shorebirds. During spring migration in the U.S. Prairie Potholes, 7.3 million shorebirds refuel in the region's myriad small, freshwater wetlands. Shorebirds use mudflats, shorelines, and ephemeral wetlands that are far more abundant in wet years than dry years. Generally, climate change is expected to bring warmer temperatures, seasonality shifts, more extreme events, and changes to precipitation. The impacts to wetland habitats are uncertain. In the Prairie Potholes, earlier spring onset and warmer temperatures may advance drying of wetlands or, alternately, increased spring precipitation may produce abundant shallow‐water habitats. To look at the availability of habitats for migratory shorebirds under different climate regimes, we compared habitat selection between a historic wet year and a dry year using binomial random‐effects models to describe local and landscape patterns. We found that in the dry year shorebirds were distributed more northerly and among more permanent wetlands, whereas in the wet year shorebirds were distributed more southerly and among more temporary wetlands. However, landscape‐scale variation played a larger role in the dry year. At the local wetland scale, shorebirds selected similarly between years—for shallower wetlands and wetlands in croplands. Overall, while shorebirds were sensitive to local habitat conditions, they exhibited a degree of adaptive capacity to climate change impacts by their ability to shift on the landscape. This indicates an avenue through which management decisions can enhance climate change resilience for these species given an uncertain future—by preserving shallow‐water wetlands in croplands throughout the landscape.

Journal

EcosphereWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off