Preparation and coagulation performance of hybrid coagulant polyacrylamide–polymeric aluminum ferric chloride

Preparation and coagulation performance of hybrid coagulant polyacrylamide–polymeric aluminum... In this study, we synthesized a novel hybrid coagulant, polyacrylamide (PAM)–polymeric aluminum ferric chloride (PAFC), by the polymerization of acrylamide monomer with the redox system (NH4)2S2O8–NaHSO3. The factors affecting the PAM–PAFC hybrid coagulant were investigated in an orthogonal experiment. The maximum intrinsic viscosity was observed at an initiator mass fraction of 0.5%, a polymerization temperature of 50 °C, a monomer mass fraction of 20%, and a polymerization time of 4 h, which were the optimum synthesis parameters. The spatial network structure of the PAM–PAFC hybrid coagulant was graphically determined by scanning electron microscopy. Hybrid PAM–PAFC was adopted to treat the kaolin–humic acid suspension and the synthetic dye wastewater. The effect of the coagulant dosage and pH on the coagulant experiments were examined. The coagulant experiment on the kaolin–humic acid suspension showed that the optimum treatment efficiency was achieved at a coagulants dosage of 0.6 mg/L, at which level the turbidity reductions with the inorganic PAFC coagulant, PAM–PAFC composite, and PAM–PAFC hybrid were 95.30%, 95.84%, and 98.38%, respectively. Treatment with the PAM–PAFC hybrid coagulant was also effective in removing Congo Red and Direct Fast Turquoise Blue GL; the color‐removal efficiencies for these dyes were higher than 93% and 94%, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46355. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Polymer Science Wiley

Preparation and coagulation performance of hybrid coagulant polyacrylamide–polymeric aluminum ferric chloride

Loading next page...
 
/lp/wiley/preparation-and-coagulation-performance-of-hybrid-coagulant-XxNjWl1RVV
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0021-8995
eISSN
1097-4628
D.O.I.
10.1002/app.46355
Publisher site
See Article on Publisher Site

Abstract

In this study, we synthesized a novel hybrid coagulant, polyacrylamide (PAM)–polymeric aluminum ferric chloride (PAFC), by the polymerization of acrylamide monomer with the redox system (NH4)2S2O8–NaHSO3. The factors affecting the PAM–PAFC hybrid coagulant were investigated in an orthogonal experiment. The maximum intrinsic viscosity was observed at an initiator mass fraction of 0.5%, a polymerization temperature of 50 °C, a monomer mass fraction of 20%, and a polymerization time of 4 h, which were the optimum synthesis parameters. The spatial network structure of the PAM–PAFC hybrid coagulant was graphically determined by scanning electron microscopy. Hybrid PAM–PAFC was adopted to treat the kaolin–humic acid suspension and the synthetic dye wastewater. The effect of the coagulant dosage and pH on the coagulant experiments were examined. The coagulant experiment on the kaolin–humic acid suspension showed that the optimum treatment efficiency was achieved at a coagulants dosage of 0.6 mg/L, at which level the turbidity reductions with the inorganic PAFC coagulant, PAM–PAFC composite, and PAM–PAFC hybrid were 95.30%, 95.84%, and 98.38%, respectively. Treatment with the PAM–PAFC hybrid coagulant was also effective in removing Congo Red and Direct Fast Turquoise Blue GL; the color‐removal efficiencies for these dyes were higher than 93% and 94%, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46355.

Journal

Journal of Applied Polymer ScienceWiley

Published: Jan 15, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off