Preparation and characterization of microencapsulated LDHs with melamine‐formaldehyde resin and its flame retardant application in epoxy resin

Preparation and characterization of microencapsulated LDHs with melamine‐formaldehyde resin and... Layered double hydroxides (LDHs) are emerging as a new and green high‐efficient flame retardant. But LDHs aggregate seriously because of their hydrophilicity, which affect deeply the mechanical and flame retardant properties of their composites. For the first time in this paper, microencapsulated LDHs (MCLDHs) with melamine‐formaldehyde (MF) resin were prepared by microencapsulation technology to enhance their compatibility and dispersion within epoxy resin (EP). The mechanical and flame retardant performances of EP/MCLDH composite were studied by comparing with EP/LDH composite. Results showed that the water contact angle of MCLDHs increased from 8.9° to 122.1°, which indicated good compatibility. The particle size of MCLDHs decreased sharply, and more than one‐third were up to submicron scale, which can be conducive to dispersion. Moreover, the tensile strength and elongation at break of EP/MCLDHs with different flame retardant contents were higher than those of EP/LDHs. And the addition of MCLDHs increased the glass transition temperature (Tg) of EP/MCLDHs, which meant a strong interfacial interaction. Besides, compared with EP/LDHs, the limiting oxygen index values of EP/MCLDHs were higher, and its peak of heat release rate and total heat release decreased by 16.3% and 5.5% respectively. EP/MCLDHs achieved from V‐1 to V‐0 rate with the increasing content of MCLDHs from 20% to 30%, while LDHs/EP never passed tests. In the process of heating, H2O, CO2, and NH3 released from MCLDHs formed gaseous phase, and the remaining dense char layers and oxides produced condensed phase, which played an important role in inhibiting combustion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymers for Advanced Technologies Wiley

Preparation and characterization of microencapsulated LDHs with melamine‐formaldehyde resin and its flame retardant application in epoxy resin

Loading next page...
 
/lp/wiley/preparation-and-characterization-of-microencapsulated-ldhs-with-fqvceGRe0u
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1042-7147
eISSN
1099-1581
D.O.I.
10.1002/pat.4323
Publisher site
See Article on Publisher Site

Abstract

Layered double hydroxides (LDHs) are emerging as a new and green high‐efficient flame retardant. But LDHs aggregate seriously because of their hydrophilicity, which affect deeply the mechanical and flame retardant properties of their composites. For the first time in this paper, microencapsulated LDHs (MCLDHs) with melamine‐formaldehyde (MF) resin were prepared by microencapsulation technology to enhance their compatibility and dispersion within epoxy resin (EP). The mechanical and flame retardant performances of EP/MCLDH composite were studied by comparing with EP/LDH composite. Results showed that the water contact angle of MCLDHs increased from 8.9° to 122.1°, which indicated good compatibility. The particle size of MCLDHs decreased sharply, and more than one‐third were up to submicron scale, which can be conducive to dispersion. Moreover, the tensile strength and elongation at break of EP/MCLDHs with different flame retardant contents were higher than those of EP/LDHs. And the addition of MCLDHs increased the glass transition temperature (Tg) of EP/MCLDHs, which meant a strong interfacial interaction. Besides, compared with EP/LDHs, the limiting oxygen index values of EP/MCLDHs were higher, and its peak of heat release rate and total heat release decreased by 16.3% and 5.5% respectively. EP/MCLDHs achieved from V‐1 to V‐0 rate with the increasing content of MCLDHs from 20% to 30%, while LDHs/EP never passed tests. In the process of heating, H2O, CO2, and NH3 released from MCLDHs formed gaseous phase, and the remaining dense char layers and oxides produced condensed phase, which played an important role in inhibiting combustion.

Journal

Polymers for Advanced TechnologiesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off