Preferable in vitro condition for maintaining faithful DNA methylation imprinting in mouse embryonic stem cells

Preferable in vitro condition for maintaining faithful DNA methylation imprinting in mouse... Epigenetic properties of cultured embryonic stem cells (ESCs), including DNA methylation imprinting, are important because they affect the developmental potential. Here, we tested a variety of culture media, including knockout serum replacement (KSR) and fetal bovine serum (FBS) with or without inhibitors of Gsk3β and Mek1/2 (2i) at various time points. In addition to the previously known passage‐dependent global changes, unexpected dynamic DNA methylation changes occurred in both maternal and paternal differentially methylated regions: under the widely used condition of KSR with 2i, a highly hypomethylated state occurred at early passages (P1–7) as well as P10, but DNA methylation increased over further passages in most conditions, except under KSR with 2i at P25. Dramatic DNA demethylation under KSR+2i until P25 was associated with upregulated Tet1 and Parp1, and their related genes, whereas 2i regulated the expressions of DNA methyltransferase‐related genes for the change in DNA methylation during the cumulative number of passages. Although DNA methylation imprinting is more labile under KSR with and without 2i, it can be more faithfully maintained under condition of cooperative FBS and 2i. Thus, our study will provide the useful information for improved epigenetic control of ESCs and iPSCs in applications in regenerative medicine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genes to Cells Wiley

Preferable in vitro condition for maintaining faithful DNA methylation imprinting in mouse embryonic stem cells

Loading next page...
 
/lp/wiley/preferable-in-vitro-condition-for-maintaining-faithful-dna-methylation-rPy0gNROzW
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
ISSN
1356-9597
eISSN
1365-2443
D.O.I.
10.1111/gtc.12560
Publisher site
See Article on Publisher Site

Abstract

Epigenetic properties of cultured embryonic stem cells (ESCs), including DNA methylation imprinting, are important because they affect the developmental potential. Here, we tested a variety of culture media, including knockout serum replacement (KSR) and fetal bovine serum (FBS) with or without inhibitors of Gsk3β and Mek1/2 (2i) at various time points. In addition to the previously known passage‐dependent global changes, unexpected dynamic DNA methylation changes occurred in both maternal and paternal differentially methylated regions: under the widely used condition of KSR with 2i, a highly hypomethylated state occurred at early passages (P1–7) as well as P10, but DNA methylation increased over further passages in most conditions, except under KSR with 2i at P25. Dramatic DNA demethylation under KSR+2i until P25 was associated with upregulated Tet1 and Parp1, and their related genes, whereas 2i regulated the expressions of DNA methyltransferase‐related genes for the change in DNA methylation during the cumulative number of passages. Although DNA methylation imprinting is more labile under KSR with and without 2i, it can be more faithfully maintained under condition of cooperative FBS and 2i. Thus, our study will provide the useful information for improved epigenetic control of ESCs and iPSCs in applications in regenerative medicine.

Journal

Genes to CellsWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off