Predictive mapping of alpine grasslands in Switzerland: Species versus community approach

Predictive mapping of alpine grasslands in Switzerland: Species versus community approach Abstract. Separate logistic regression models were developed to predict the distribution and large‐scale spatial patterns of dominant graminoid species and communities in alpine grasslands. The models are driven by four bioclimatic parameters: degree‐days of growing season (basis 0 °C), a moisture index for July, potential direct solar radiation for March, and a continentality index. Geology and slope angle were used as a surrogate for nutrient availability and soil water capacity. The bioclimatic parameters were derived from monthly mean temperature, precipitation, cloudiness and potential direct solar radiation. The environmental parameters were interpolated using a digital elevation model with a resolution of 50 m. The vegetation data for model calibration originate from field surveys and literature. An independent test data set with samples from three different climatic zones was used to test the model. The degree of coincidence between simulated and observed patterns was similar for species and communities, but the κ‐values for communities were generally higher (κ= 0.539) than for species (mean individual κ= 0.201). Information on land use was detected as a major factor that could significantly improve both the species and the community model. Nevertheless, the climatic factors used to drive the model explained a major part of the observed patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Predictive mapping of alpine grasslands in Switzerland: Species versus community approach

Loading next page...
 
/lp/wiley/predictive-mapping-of-alpine-grasslands-in-switzerland-species-versus-G9Oh8U750C
Publisher
Wiley
Copyright
1999 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.2307/3237182
Publisher site
See Article on Publisher Site

Abstract

Abstract. Separate logistic regression models were developed to predict the distribution and large‐scale spatial patterns of dominant graminoid species and communities in alpine grasslands. The models are driven by four bioclimatic parameters: degree‐days of growing season (basis 0 °C), a moisture index for July, potential direct solar radiation for March, and a continentality index. Geology and slope angle were used as a surrogate for nutrient availability and soil water capacity. The bioclimatic parameters were derived from monthly mean temperature, precipitation, cloudiness and potential direct solar radiation. The environmental parameters were interpolated using a digital elevation model with a resolution of 50 m. The vegetation data for model calibration originate from field surveys and literature. An independent test data set with samples from three different climatic zones was used to test the model. The degree of coincidence between simulated and observed patterns was similar for species and communities, but the κ‐values for communities were generally higher (κ= 0.539) than for species (mean individual κ= 0.201). Information on land use was detected as a major factor that could significantly improve both the species and the community model. Nevertheless, the climatic factors used to drive the model explained a major part of the observed patterns.

Journal

Journal of Vegetation ScienceWiley

Published: Aug 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off