Predicting the oceanic input of organic carbon by continental erosion

Predicting the oceanic input of organic carbon by continental erosion For a large set of major world rivers we established the empirical relations existing between the observed organic carbon fluxes and the climatic, biologic, and geomorphologic patterns characterizing the river basins. These characteristics were extracted from various ecological databases. The corresponding carbon fluxes were taken from the literature. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment fluxes, which depend principally upon drainage intensity, rainfall intensity, and basin slope. Although the drainage intensity is mainly related to the amount of precipitation and to mean temperature in the basin, slope is also retained as one of the controlling factors. Our empirical models result in a total organic carbon flux to the oceans of about 0.38 Gt per year globally. About 0.21 Gt carbon (Gt C) enter the oceans in dissolved form and about 0.17 Gt C in particulate form. We further regionalize fluxes with respect to major climates, different continents, and different ocean basins. About 45 % of the organic carbon is discharged from tropical wet regions. The major part of the dissolved organic carbon is discharged into the Atlantic Ocean, while the bulk of the particulate organic carbon is discharged into the Indian and Pacific Oceans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

Predicting the oceanic input of organic carbon by continental erosion

Loading next page...
 
/lp/wiley/predicting-the-oceanic-input-of-organic-carbon-by-continental-erosion-uPehhQi5W7
Publisher
Wiley
Copyright
Copyright © 1996 by the American Geophysical Union.
ISSN
0886-6236
eISSN
1944-9224
DOI
10.1029/95GB02925
Publisher site
See Article on Publisher Site

Abstract

For a large set of major world rivers we established the empirical relations existing between the observed organic carbon fluxes and the climatic, biologic, and geomorphologic patterns characterizing the river basins. These characteristics were extracted from various ecological databases. The corresponding carbon fluxes were taken from the literature. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment fluxes, which depend principally upon drainage intensity, rainfall intensity, and basin slope. Although the drainage intensity is mainly related to the amount of precipitation and to mean temperature in the basin, slope is also retained as one of the controlling factors. Our empirical models result in a total organic carbon flux to the oceans of about 0.38 Gt per year globally. About 0.21 Gt carbon (Gt C) enter the oceans in dissolved form and about 0.17 Gt C in particulate form. We further regionalize fluxes with respect to major climates, different continents, and different ocean basins. About 45 % of the organic carbon is discharged from tropical wet regions. The major part of the dissolved organic carbon is discharged into the Atlantic Ocean, while the bulk of the particulate organic carbon is discharged into the Indian and Pacific Oceans.

Journal

Global Biogeochemical CyclesWiley

Published: Mar 1, 1996

References

  • Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces
    Clair, Clair; Pollock, Pollock; Ehrman, Ehrman
  • Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand, 1, Maimai
    Moore, Moore
  • Continental erosion and large scale relief
    Pinet, Pinet; Souriau, Souriau
  • Coastal metabolism and the oceanic organic carbon balance
    Smith, Smith; Hollibough, Hollibough

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off