Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps

Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain:... Aim To test the effectiveness of statistical models based on explanatory environmental variables vs. existing distribution information (maps and breeding atlas), for predicting the distribution of four species of raptors (family Accipitridae): common buzzard Buteo buteo (Linnaeus, 1758), short‐toed eagle Circaetus gallicus (Gmelin, 1788), booted eagle Hieraaetus pennatus (Gmelin, 1788) and black kite Milvus migrans (Boddaert, 1783). Location Andalusia, southern Spain. Methods Generalized linear models of 10 × 10 km squares surveyed for the presence/absence of the species by road census. Statistical models use as predictors variables derived from topography, vegetation and land‐use, and the geographical coordinates (to take account of possible spatial trends). Predictions from the models are compared with current distribution maps from the national breeding atlas and leading reference works. Results The maps derived from statistical models for all four species were more predictive than the previously published range maps and the recent national breeding atlas. The best models incorporated both topographic and vegetation and land‐use variables. Further, in three of the four species the inclusion of spatial coordinates to account for neighbourhood effects improved these models. Models for the common buzzard and black kite were highly predictive and easy to interpret from an ecological point of view, while models for short‐toed eagle and, particularly, booted eagle were not so easy to interpret, but still predicted better than previous distribution information. Main conclusions It is possible to build accurate predictive models for raptor distribution with a limited field survey using as predictors environmental variables derived from digital maps. These models integrated in a geographical information system produced distribution maps that were more accurate than previously published ones for the study species in the study area. Our study is an example of a methodology that could be used for many taxa and areas to improve unreliable distribution information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps

Loading next page...
 
/lp/wiley/predicting-the-distribution-of-four-species-of-raptors-aves-LMxB0z29Y1
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1046/j.0305-0270.2003.01006.x
Publisher site
See Article on Publisher Site

Abstract

Aim To test the effectiveness of statistical models based on explanatory environmental variables vs. existing distribution information (maps and breeding atlas), for predicting the distribution of four species of raptors (family Accipitridae): common buzzard Buteo buteo (Linnaeus, 1758), short‐toed eagle Circaetus gallicus (Gmelin, 1788), booted eagle Hieraaetus pennatus (Gmelin, 1788) and black kite Milvus migrans (Boddaert, 1783). Location Andalusia, southern Spain. Methods Generalized linear models of 10 × 10 km squares surveyed for the presence/absence of the species by road census. Statistical models use as predictors variables derived from topography, vegetation and land‐use, and the geographical coordinates (to take account of possible spatial trends). Predictions from the models are compared with current distribution maps from the national breeding atlas and leading reference works. Results The maps derived from statistical models for all four species were more predictive than the previously published range maps and the recent national breeding atlas. The best models incorporated both topographic and vegetation and land‐use variables. Further, in three of the four species the inclusion of spatial coordinates to account for neighbourhood effects improved these models. Models for the common buzzard and black kite were highly predictive and easy to interpret from an ecological point of view, while models for short‐toed eagle and, particularly, booted eagle were not so easy to interpret, but still predicted better than previous distribution information. Main conclusions It is possible to build accurate predictive models for raptor distribution with a limited field survey using as predictors environmental variables derived from digital maps. These models integrated in a geographical information system produced distribution maps that were more accurate than previously published ones for the study species in the study area. Our study is an example of a methodology that could be used for many taxa and areas to improve unreliable distribution information.

Journal

Journal of BiogeographyWiley

Published: Feb 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off