Predicting reading difficulty with statistical language models

Predicting reading difficulty with statistical language models A potentially useful feature of information retrieval systems for students is the ability to identify documents that not only are relevant to the query but also match the student's reading level. Manually obtaining an estimate of reading difficulty for each document is not feasible for very large collections, so we require an automated technique. Traditional readability measures, such as the widely used Flesch‐Kincaid measure, are simple to apply but perform poorly on Web pages and other nontraditional documents. This work focuses on building a broadly applicable statistical model of text for different reading levels that works for a wide range of documents. To do this, we recast the well‐studied problem of readability in terms of text categorization and use straightforward techniques from statistical language modeling. We show that with a modified form of text categorization, it is possible to build generally applicable classifiers with relatively little training data. We apply this method to the problem of classifying Web pages according to their reading difficulty level and show that by using a mixture model to interpolate evidence of a word's frequency across grades, it is possible to build a classifier that achieves an average root mean squared error of between one and two grade levels for 9 of 12 grades. Such classifiers have very efficient implementations and can be applied in many different scenarios. The models can be varied to focus on smaller or larger grade ranges or easily retrained for a variety of tasks or populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Society for Information Science and Technology Wiley

Predicting reading difficulty with statistical language models

Loading next page...
 
/lp/wiley/predicting-reading-difficulty-with-statistical-language-models-nNi0AhgUBa
Publisher site
See Article on Publisher Site

Abstract

A potentially useful feature of information retrieval systems for students is the ability to identify documents that not only are relevant to the query but also match the student's reading level. Manually obtaining an estimate of reading difficulty for each document is not feasible for very large collections, so we require an automated technique. Traditional readability measures, such as the widely used Flesch‐Kincaid measure, are simple to apply but perform poorly on Web pages and other nontraditional documents. This work focuses on building a broadly applicable statistical model of text for different reading levels that works for a wide range of documents. To do this, we recast the well‐studied problem of readability in terms of text categorization and use straightforward techniques from statistical language modeling. We show that with a modified form of text categorization, it is possible to build generally applicable classifiers with relatively little training data. We apply this method to the problem of classifying Web pages according to their reading difficulty level and show that by using a mixture model to interpolate evidence of a word's frequency across grades, it is possible to build a classifier that achieves an average root mean squared error of between one and two grade levels for 9 of 12 grades. Such classifiers have very efficient implementations and can be applied in many different scenarios. The models can be varied to focus on smaller or larger grade ranges or easily retrained for a variety of tasks or populations.

Journal

Journal of the American Society for Information Science and TechnologyWiley

Published: Nov 1, 2005

References

  • An algorithm for suffix stripping
    Porter, Porter
  • Toward a theory of construct definition
    Stenner, Stenner; Smith, Smith; Burdick, Burdick

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off