Predation by polyphagous carabid beetles on eggs of a pest slug: Potential implications of climate change

Predation by polyphagous carabid beetles on eggs of a pest slug: Potential implications of... Harpalus rufipes and Poecilus cupreus are two widespread polyphagous carabids which are known to destroy eggs of the pest slug Deroceras reticulatum in the laboratory. To examine the effect of temperature on the predation of the eggs of D. reticulatum by H. rufipes and P. cupreus, a laboratory experiment with different temperatures and a semi‐field experiment including simulated warming were performed. In both experiments, H. rufipes killed more eggs than P. cupreus, and the predatory activity of the former increased significantly with increasing temperature. To our knowledge, this is the first study on predatory activity of polyphagous carabids on the eggs of a pest slug performed under a climate warming scenario. Results suggest that biological pest control performed by polyphagous carabids such as H. rufipes upon pest slugs may be enhanced under predicted climate warming conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Entomology Wiley

Predation by polyphagous carabid beetles on eggs of a pest slug: Potential implications of climate change

Loading next page...
 
/lp/wiley/predation-by-polyphagous-carabid-beetles-on-eggs-of-a-pest-slug-Ogg3apsVyS
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Blackwell Verlag GmbH
ISSN
0931-2048
eISSN
1439-0418
D.O.I.
10.1111/jen.12474
Publisher site
See Article on Publisher Site

Abstract

Harpalus rufipes and Poecilus cupreus are two widespread polyphagous carabids which are known to destroy eggs of the pest slug Deroceras reticulatum in the laboratory. To examine the effect of temperature on the predation of the eggs of D. reticulatum by H. rufipes and P. cupreus, a laboratory experiment with different temperatures and a semi‐field experiment including simulated warming were performed. In both experiments, H. rufipes killed more eggs than P. cupreus, and the predatory activity of the former increased significantly with increasing temperature. To our knowledge, this is the first study on predatory activity of polyphagous carabids on the eggs of a pest slug performed under a climate warming scenario. Results suggest that biological pest control performed by polyphagous carabids such as H. rufipes upon pest slugs may be enhanced under predicted climate warming conditions.

Journal

Journal of Applied EntomologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial