Power law distributions of discharge mass and energy in river basins

Power law distributions of discharge mass and energy in river basins River networks constitute dissipative systems with many spatial degrees of freedom. Previous work by Mandelbrot (1983) and Bak et al. (1987, 1988, 1990) suggests that such systems will follow power law distributions in their mass and energy characteristics. It is shown that this is the case for river networks where the exponent β in the distribution, P(X > x) ∝ x−β, is approximately equal to 0.45 and 0.90 for discharge and energy respectively in the case of several networks analyzed in North America when these variables are calculated for each individual link throughout the drainage network. An explanation of the values of β is offered based on the fractal structure of rivers and on principles of energy expenditure in river basins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Power law distributions of discharge mass and energy in river basins

Loading next page...
 
/lp/wiley/power-law-distributions-of-discharge-mass-and-energy-in-river-basins-3Li48WrdHG
Publisher
Wiley
Copyright
Copyright © 1992 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/91WR03033
Publisher site
See Article on Publisher Site

Abstract

River networks constitute dissipative systems with many spatial degrees of freedom. Previous work by Mandelbrot (1983) and Bak et al. (1987, 1988, 1990) suggests that such systems will follow power law distributions in their mass and energy characteristics. It is shown that this is the case for river networks where the exponent β in the distribution, P(X > x) ∝ x−β, is approximately equal to 0.45 and 0.90 for discharge and energy respectively in the case of several networks analyzed in North America when these variables are calculated for each individual link throughout the drainage network. An explanation of the values of β is offered based on the fractal structure of rivers and on principles of energy expenditure in river basins.

Journal

Water Resources ResearchWiley

Published: Apr 1, 1992

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off