Postnatal growth and morphological development of the brain: a species comparison

Postnatal growth and morphological development of the brain: a species comparison The objective of this report is to summarize the available literature regarding the postnatal growth and morphological development of the brain and compare the timelines for these events between humans and experimental species. While not the primary focus of this report, in acknowledgement of the evident role of maturation of neurotransmitter systems in development, a brief description of the comparative development of the NMDA receptor is included. To illustrate the challenges faced in estimating developmental toxicity potential in humans, the importance of postnatal experience in CNS development is also briefly reviewed. This review is part of the initial phase of a project undertaken by the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) to bring together information on a selected number of organ systems and compare their postnatal development across several species (Hurtt and Sandler: Birth Defects Res Part B 68:307–308, 2003). Birth Defects Res (Part B) 77:471–484, 2006. © 2006 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Birth Defects Research Part B Wiley

Postnatal growth and morphological development of the brain: a species comparison

Loading next page...
1
 
/lp/wiley/postnatal-growth-and-morphological-development-of-the-brain-a-species-2ypG86N0aQ
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services
ISSN
1542-9733
eISSN
1542-9741
D.O.I.
10.1002/bdrb.20090
Publisher site
See Article on Publisher Site

Abstract

The objective of this report is to summarize the available literature regarding the postnatal growth and morphological development of the brain and compare the timelines for these events between humans and experimental species. While not the primary focus of this report, in acknowledgement of the evident role of maturation of neurotransmitter systems in development, a brief description of the comparative development of the NMDA receptor is included. To illustrate the challenges faced in estimating developmental toxicity potential in humans, the importance of postnatal experience in CNS development is also briefly reviewed. This review is part of the initial phase of a project undertaken by the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) to bring together information on a selected number of organ systems and compare their postnatal development across several species (Hurtt and Sandler: Birth Defects Res Part B 68:307–308, 2003). Birth Defects Res (Part B) 77:471–484, 2006. © 2006 Wiley‐Liss, Inc.

Journal

Birth Defects Research Part BWiley

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off