Post‐Earnings Announcement Drift and the Dissemination of Predictable Information *

Post‐Earnings Announcement Drift and the Dissemination of Predictable Information * Building on the work of Bernard and Thomas 1990, we develop a model to infer the degree to which the information in an earnings announcement is incorporated into investors' expectations for the subsequent earnings announcement at any point in time between the two announcements. We are unable to reject the null hypothesis that investors' earnings expectations are based on a seasonal random walk and reflect none of the implications of the immediately prior earnings announcement up to 15 trading days after that announcement. By mid‐quarter, expectations are significantly more sophisticated than a seasonal random walk. Two trading days before the next earnings announcement, as much as one half of the information in the prior earnings announcement is reflected in earnings expectations. We also find that the dissemination of information, albeit predictable information, speeds the incorporation of prior earnings information into earnings expectations. Our results suggest that as information about future earnings that could have been discerned from the earlier announcements (because past earnings surprises predict future ones) is disseminated in a more transparent form, investors revise their earnings expectations to reflect this information. Thus, the investors' expectations appear to incorporate more and more of the serial correlation in earnings surprises as the quarter progresses, even though they do not consider per se the serial correlation in earnings surprises in forming their expectations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Contemporary Accounting Research Wiley

Post‐Earnings Announcement Drift and the Dissemination of Predictable Information *

Loading next page...
 
/lp/wiley/post-earnings-announcement-drift-and-the-dissemination-of-predictable-08nfzItNVW
Publisher
Wiley
Copyright
1999 Canadian Academic Accounting Association
ISSN
0823-9150
eISSN
1911-3846
DOI
10.1111/j.1911-3846.1999.tb00583.x
Publisher site
See Article on Publisher Site

Abstract

Building on the work of Bernard and Thomas 1990, we develop a model to infer the degree to which the information in an earnings announcement is incorporated into investors' expectations for the subsequent earnings announcement at any point in time between the two announcements. We are unable to reject the null hypothesis that investors' earnings expectations are based on a seasonal random walk and reflect none of the implications of the immediately prior earnings announcement up to 15 trading days after that announcement. By mid‐quarter, expectations are significantly more sophisticated than a seasonal random walk. Two trading days before the next earnings announcement, as much as one half of the information in the prior earnings announcement is reflected in earnings expectations. We also find that the dissemination of information, albeit predictable information, speeds the incorporation of prior earnings information into earnings expectations. Our results suggest that as information about future earnings that could have been discerned from the earlier announcements (because past earnings surprises predict future ones) is disseminated in a more transparent form, investors revise their earnings expectations to reflect this information. Thus, the investors' expectations appear to incorporate more and more of the serial correlation in earnings surprises as the quarter progresses, even though they do not consider per se the serial correlation in earnings surprises in forming their expectations.

Journal

Contemporary Accounting ResearchWiley

Published: Jun 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off