Polymorphic uncertainty quantification for stability analysis of fluid saturated soil and earth structures

Polymorphic uncertainty quantification for stability analysis of fluid saturated soil and earth... Nowadays, numerical simulations enable the description of mechanical problems in many application fields, e.g. in soil or solid mechanics. During the process of physical and computational modeling, a lot of theoretical model approaches and geometrical approximations are sources of errors. These can be distinguished into aleatoric (e.g. model parameters) and epistemic (e.g. numerical approximation) uncertainties. In order to get access to a risk assessment, these uncertainties and errors must be captured and quantified. For this aim a new priority program SPP 1886 has been installed by the DFG which focuses on the so called polymorphic uncertainty quantification. In our subproject, which is part of the SPP 1886 (sp12), the focus is driven on quantification and assessment of polymorphic uncertainties in computational simulations of earth structures, especially for fluid‐saturated soils. To describe the strongly coupled solid‐fluid response behavior, the theory of porous media (TPM) will be used and prepared within the framework of the finite element method (FEM) for the numerical solution of initial and boundary value problems [2, 3]. To capture the impacts of different uncertainties on computational results, two promising approaches of analytical and stochastic sensitivity analysis will enhance the deterministic structural analysis [6–8]. A simple consolidation problem already provided a high sensitivity in the computational results towards variation of material parameters and initial values. The variational and probabilistic sensitivity analyses enable to quantify these sensitivities. The variational sensitivities are used as a tool for optimization procedures and capture the impact of different parameters as continuous functions. An advantage is the accurate approximation of the solution space and the efficient computation time, a disadvantage lies in the analytical derivation and algorithmic implementation. In the probabilistic sensitivity analysis from the field of statistics, the expense only increases proportionally to the problems dimension. Instead of a constant value, the model parameters are defined as probability distribution, which provides random values. Thus, a set of solution data is built up by several cycles of the simulation. Different approaches of the Bayes statistics will enable to receive accurate information with just a few simulations. The overall objective is the development of more efficient methods and tools for the sizing of earth structures in the long‐run. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Polymorphic uncertainty quantification for stability analysis of fluid saturated soil and earth structures

Loading next page...
 
/lp/wiley/polymorphic-uncertainty-quantification-for-stability-analysis-of-fluid-WVZune0Xsf
Publisher
Wiley
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710018
Publisher site
See Article on Publisher Site

Abstract

Nowadays, numerical simulations enable the description of mechanical problems in many application fields, e.g. in soil or solid mechanics. During the process of physical and computational modeling, a lot of theoretical model approaches and geometrical approximations are sources of errors. These can be distinguished into aleatoric (e.g. model parameters) and epistemic (e.g. numerical approximation) uncertainties. In order to get access to a risk assessment, these uncertainties and errors must be captured and quantified. For this aim a new priority program SPP 1886 has been installed by the DFG which focuses on the so called polymorphic uncertainty quantification. In our subproject, which is part of the SPP 1886 (sp12), the focus is driven on quantification and assessment of polymorphic uncertainties in computational simulations of earth structures, especially for fluid‐saturated soils. To describe the strongly coupled solid‐fluid response behavior, the theory of porous media (TPM) will be used and prepared within the framework of the finite element method (FEM) for the numerical solution of initial and boundary value problems [2, 3]. To capture the impacts of different uncertainties on computational results, two promising approaches of analytical and stochastic sensitivity analysis will enhance the deterministic structural analysis [6–8]. A simple consolidation problem already provided a high sensitivity in the computational results towards variation of material parameters and initial values. The variational and probabilistic sensitivity analyses enable to quantify these sensitivities. The variational sensitivities are used as a tool for optimization procedures and capture the impact of different parameters as continuous functions. An advantage is the accurate approximation of the solution space and the efficient computation time, a disadvantage lies in the analytical derivation and algorithmic implementation. In the probabilistic sensitivity analysis from the field of statistics, the expense only increases proportionally to the problems dimension. Instead of a constant value, the model parameters are defined as probability distribution, which provides random values. Thus, a set of solution data is built up by several cycles of the simulation. Different approaches of the Bayes statistics will enable to receive accurate information with just a few simulations. The overall objective is the development of more efficient methods and tools for the sizing of earth structures in the long‐run. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off