Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56 acetylation, and H2A‐S129 phosphorylation in Beauveria bassiana

Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56... Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4‐K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4‐K16 and is also involved in the acetylation of histone H3‐K56 and the phosphorylation of histone H2A‐S129 and cyclin‐dependent kinase 1 CDK1‐Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site‐specific modifications are evidenced with hyperacetylated H4‐K16, hypoacetylated H3‐K56, and both hypophosphorylated H2A‐S129 and CDK1‐Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA‐damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1/S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4‐K16 and to indirectly modify H3‐K56, H2A‐S129, and CDK1‐Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular Microbiology Wiley

Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56 acetylation, and H2A‐S129 phosphorylation in Beauveria bassiana

Loading next page...
 
/lp/wiley/pleiotropic-effects-of-the-histone-deacetylase-hos2-linked-to-h4-k16-qdb9skEKyl
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 John Wiley & Sons Ltd
ISSN
1462-5814
eISSN
1462-5822
D.O.I.
10.1111/cmi.12839
Publisher site
See Article on Publisher Site

Abstract

Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4‐K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4‐K16 and is also involved in the acetylation of histone H3‐K56 and the phosphorylation of histone H2A‐S129 and cyclin‐dependent kinase 1 CDK1‐Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site‐specific modifications are evidenced with hyperacetylated H4‐K16, hypoacetylated H3‐K56, and both hypophosphorylated H2A‐S129 and CDK1‐Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA‐damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1/S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4‐K16 and to indirectly modify H3‐K56, H2A‐S129, and CDK1‐Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi.

Journal

Cellular MicrobiologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off