Plant species as predictors of soil pH: Replacing expert judgement with measurements

Plant species as predictors of soil pH: Replacing expert judgement with measurements Question: The use of expert‐based indicator values to estimate abiotic conditions from vegetation is widespread. However, recent research has shown that expert judgement may contain considerable bias and thereby introduces a large amount of uncertainty. Could expert based indicator values be replaced by indicator values based on field measurements? Location: Europe. Methods: We developed a method to estimate species response based on measured physical data, and a method to predict abiotic conditions from the vegetation composition using these responses. This method was tested for soil pH. Results: We were able to estimate the pH response of 556 species of the Dutch flora. Ca. 20% of the responses were, at least, bimodal and many responses had a very wide range. The simplest method (‘raw mean’) yielded the best prediction of pH; the indicator value of a species is the mean of the soil pH values of the sites where it was observed. A list of all raw‐mean estimates per species is given. The predicted pH of a new site is the mean of the indicator values of the present species. The estimated species responses were validated on independent Dutch and European data sets. Older successional stages seem to be predicted better than younger stages. Conclusions: Our method performed better than the popular Ellenberg indicator system for the Dutch data set, while being just as easy to use, because it only needs a single value per species. We foresee that, when more data become available, our method has the potential to replace the Ellenberg system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Plant species as predictors of soil pH: Replacing expert judgement with measurements

Loading next page...
 
/lp/wiley/plant-species-as-predictors-of-soil-ph-replacing-expert-judgement-with-LD0piREoix
Publisher
Wiley
Copyright
2005 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.1111/j.1654-1103.2005.tb02386.x
Publisher site
See Article on Publisher Site

Abstract

Question: The use of expert‐based indicator values to estimate abiotic conditions from vegetation is widespread. However, recent research has shown that expert judgement may contain considerable bias and thereby introduces a large amount of uncertainty. Could expert based indicator values be replaced by indicator values based on field measurements? Location: Europe. Methods: We developed a method to estimate species response based on measured physical data, and a method to predict abiotic conditions from the vegetation composition using these responses. This method was tested for soil pH. Results: We were able to estimate the pH response of 556 species of the Dutch flora. Ca. 20% of the responses were, at least, bimodal and many responses had a very wide range. The simplest method (‘raw mean’) yielded the best prediction of pH; the indicator value of a species is the mean of the soil pH values of the sites where it was observed. A list of all raw‐mean estimates per species is given. The predicted pH of a new site is the mean of the indicator values of the present species. The estimated species responses were validated on independent Dutch and European data sets. Older successional stages seem to be predicted better than younger stages. Conclusions: Our method performed better than the popular Ellenberg indicator system for the Dutch data set, while being just as easy to use, because it only needs a single value per species. We foresee that, when more data become available, our method has the potential to replace the Ellenberg system.

Journal

Journal of Vegetation ScienceWiley

Published: Aug 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off