Piecing it Together: An Additivity Scheme for Aromaticity using NICS‐XY Scans

Piecing it Together: An Additivity Scheme for Aromaticity using NICS‐XY Scans Aromatic compounds are prevalent in both nature and man‐made materials, yet their properties are still not fully understood and are therefore hard to predict. Herein, we introduce an additivity scheme for the prediction of the aromatic character of polycyclic aromatic hydrocarbons. Using a small set of building blocks and combination rules, we demonstrate the simple and intuitive construction of complete NICS‐XY‐scans for several test cases of one‐ and two‐dimensional systems comprising six‐membered rings. Partitioning the contribution of discrete building blocks provides insight into the aromatic character of these systems. The results obtained with this methodology provide a new perspective on the distribution of ring currents within polycyclic compounds and the effect of topology on the overall aromatic profile. The concept and strategy presented here are general and highly customizable. The scheme is easily applied to a wide range of interesting systems; it is especially beneficial for the investigation of large systems, as NICS‐XY‐scans are useful for their predictive utility with respect to optoelectronic and thermochemical properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemistry - A European Journal Wiley

Piecing it Together: An Additivity Scheme for Aromaticity using NICS‐XY Scans

Loading next page...
 
/lp/wiley/piecing-it-together-an-additivity-scheme-for-aromaticity-using-nics-xy-pQTXUqfsiN
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0947-6539
eISSN
1521-3765
D.O.I.
10.1002/chem.201705407
Publisher site
See Article on Publisher Site

Abstract

Aromatic compounds are prevalent in both nature and man‐made materials, yet their properties are still not fully understood and are therefore hard to predict. Herein, we introduce an additivity scheme for the prediction of the aromatic character of polycyclic aromatic hydrocarbons. Using a small set of building blocks and combination rules, we demonstrate the simple and intuitive construction of complete NICS‐XY‐scans for several test cases of one‐ and two‐dimensional systems comprising six‐membered rings. Partitioning the contribution of discrete building blocks provides insight into the aromatic character of these systems. The results obtained with this methodology provide a new perspective on the distribution of ring currents within polycyclic compounds and the effect of topology on the overall aromatic profile. The concept and strategy presented here are general and highly customizable. The scheme is easily applied to a wide range of interesting systems; it is especially beneficial for the investigation of large systems, as NICS‐XY‐scans are useful for their predictive utility with respect to optoelectronic and thermochemical properties.

Journal

Chemistry - A European JournalWiley

Published: Jan 15, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial