Physical Conditions of Fast Glacier Flow: 2. Variable Extent of Anisotropic Ice and Soft Basal Sediment From Seismic Reflection Data Acquired on Store Glacier, West Greenland

Physical Conditions of Fast Glacier Flow: 2. Variable Extent of Anisotropic Ice and Soft Basal... Outlet glaciers of the Greenland Ice Sheet transport ice from the interior to the ocean and contribute directly to sea level rise because discharge and ablation often exceed the accumulation. To develop a better understanding of these fast‐flowing glaciers, we investigate the basal conditions of Store Glacier, a large outlet glacier flowing into Uummannaq Fjord in west Greenland. We use two crossing seismic profiles acquired near the centerline, 30 km upstream of the calving front, to interpret the physical nature of the ice and bed. We identify one notably englacial and two notably subglacial seismic reflections on both profiles. The englacial reflection represents a change in crystal orientation fabric, interpreted to be the Holocene‐Wisconsin transition. From Amplitude‐Versus‐Angle (AVA) analysis we infer that the deepest ∼80 m of ice of the parallel‐flow profile below this reflection is anisotropic with an enhancement of simple shear of ∼2. The ice is underlain by ∼45 m of unconsolidated sediments, below which there is a strong reflection caused by the transition to consolidated sediments. In the across‐flow profile subglacial properties vary over small scale and the polarity of the ice‐bed reflection switches from positive to negative. We interpret these as patches of different basal slipperiness associated with variable amounts of water. Our results illustrate variability in basal properties, and hence ice‐bed coupling, at a spatial scale of ∼100 m, highlighting the need for direct observations of the bed to improve the basal boundary conditions in ice‐dynamic models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Earth Surface Wiley

Physical Conditions of Fast Glacier Flow: 2. Variable Extent of Anisotropic Ice and Soft Basal Sediment From Seismic Reflection Data Acquired on Store Glacier, West Greenland

Loading next page...
 
/lp/wiley/physical-conditions-of-fast-glacier-flow-2-variable-extent-of-b6eqvpYYhd
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-9003
eISSN
2169-9011
D.O.I.
10.1002/2017JF004297
Publisher site
See Article on Publisher Site

Abstract

Outlet glaciers of the Greenland Ice Sheet transport ice from the interior to the ocean and contribute directly to sea level rise because discharge and ablation often exceed the accumulation. To develop a better understanding of these fast‐flowing glaciers, we investigate the basal conditions of Store Glacier, a large outlet glacier flowing into Uummannaq Fjord in west Greenland. We use two crossing seismic profiles acquired near the centerline, 30 km upstream of the calving front, to interpret the physical nature of the ice and bed. We identify one notably englacial and two notably subglacial seismic reflections on both profiles. The englacial reflection represents a change in crystal orientation fabric, interpreted to be the Holocene‐Wisconsin transition. From Amplitude‐Versus‐Angle (AVA) analysis we infer that the deepest ∼80 m of ice of the parallel‐flow profile below this reflection is anisotropic with an enhancement of simple shear of ∼2. The ice is underlain by ∼45 m of unconsolidated sediments, below which there is a strong reflection caused by the transition to consolidated sediments. In the across‐flow profile subglacial properties vary over small scale and the polarity of the ice‐bed reflection switches from positive to negative. We interpret these as patches of different basal slipperiness associated with variable amounts of water. Our results illustrate variability in basal properties, and hence ice‐bed coupling, at a spatial scale of ∼100 m, highlighting the need for direct observations of the bed to improve the basal boundary conditions in ice‐dynamic models.

Journal

Journal of Geophysical Research: Earth SurfaceWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial