Photosynthetic acclimation to shade: probing the role of phytochromes using photomorphogenic mutants of tomato

Photosynthetic acclimation to shade: probing the role of phytochromes using photomorphogenic... ABSTRACT Photomorphogenic mutants of tomato were used to probe the possible involvement of phytochrome A in photosynthetic acclimation to shade. Plants of wild‐type Lycopersicon esculentum, the near isogenic mutants aurea (au, deficient in phytochrome A, and also possibly other phytochromes) and high pigment (hp, exhibiting exaggerated photomorphogenic responses), and the au/hp double mutant were grown in a greenhouse under either unfiltered daylight, or daylight attenuated by neutral density filters or green filters that simulated the spectral effects of vegetation shade. Growth and photosynthetic parameters were measured over a growing period of 15 d. Typical effects of simulated vegetation shade on extension growth were observed only in the wild‐type and hp strains; the presence of the au lesion resulted in reduced capacity to respond to vegetation shade by increased extension. Photosynthetic light saturation curves obtained using infrared gas analysis at 15 d indicated that neither the au nor the hp mutations caused serious reductions in maximum net photosynthetic rate in plants acclimated to full daylight, although the au/hp double mutant showed a significantly reduced maximum rate. In the wild‐type and hp strains grown under both neutral and simulated vegetation shade, the photosynthetic light saturation curves were similar. Plants with the au lesion showed a significantly lower capacity to acclimate to vegetation shade, as seen by their reduced maximum rate of net photosynthesis. However, in situ measurements of photosynthetic rate in the greenhouse were indistinguishable between the four strains. Thylakoid stoichiometry measurements revealed a very large increase in PSII/PSI ratio under simulated vegetation shade as compared with either unfiltered daylight or neutral density shade. These increases were not diminished in the phytochrome‐deficient au strains, and were even larger in the hp strains. The results indicate that the au lesion has little effect on the capacity of tomato to exhibit photoadaptation to simulated vegetational shade when measured at the thylakoid level. On the other hand, net leaf photosynthesis under vegetation shade can be significantly affected by the phytochrome deficiency caused by the au mutation, implying a possible role for one or more of the phytochromes in photoadaptation at the leaf level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

Photosynthetic acclimation to shade: probing the role of phytochromes using photomorphogenic mutants of tomato

Plant Cell & Environment, Volume 16 (8) – Nov 1, 1993

Loading next page...
 
/lp/wiley/photosynthetic-acclimation-to-shade-probing-the-role-of-phytochromes-eG0HlZq0UK
Publisher
Wiley
Copyright
Copyright © 1993 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0140-7791
eISSN
1365-3040
D.O.I.
10.1111/j.1365-3040.1993.tb00516.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Photomorphogenic mutants of tomato were used to probe the possible involvement of phytochrome A in photosynthetic acclimation to shade. Plants of wild‐type Lycopersicon esculentum, the near isogenic mutants aurea (au, deficient in phytochrome A, and also possibly other phytochromes) and high pigment (hp, exhibiting exaggerated photomorphogenic responses), and the au/hp double mutant were grown in a greenhouse under either unfiltered daylight, or daylight attenuated by neutral density filters or green filters that simulated the spectral effects of vegetation shade. Growth and photosynthetic parameters were measured over a growing period of 15 d. Typical effects of simulated vegetation shade on extension growth were observed only in the wild‐type and hp strains; the presence of the au lesion resulted in reduced capacity to respond to vegetation shade by increased extension. Photosynthetic light saturation curves obtained using infrared gas analysis at 15 d indicated that neither the au nor the hp mutations caused serious reductions in maximum net photosynthetic rate in plants acclimated to full daylight, although the au/hp double mutant showed a significantly reduced maximum rate. In the wild‐type and hp strains grown under both neutral and simulated vegetation shade, the photosynthetic light saturation curves were similar. Plants with the au lesion showed a significantly lower capacity to acclimate to vegetation shade, as seen by their reduced maximum rate of net photosynthesis. However, in situ measurements of photosynthetic rate in the greenhouse were indistinguishable between the four strains. Thylakoid stoichiometry measurements revealed a very large increase in PSII/PSI ratio under simulated vegetation shade as compared with either unfiltered daylight or neutral density shade. These increases were not diminished in the phytochrome‐deficient au strains, and were even larger in the hp strains. The results indicate that the au lesion has little effect on the capacity of tomato to exhibit photoadaptation to simulated vegetational shade when measured at the thylakoid level. On the other hand, net leaf photosynthesis under vegetation shade can be significantly affected by the phytochrome deficiency caused by the au mutation, implying a possible role for one or more of the phytochromes in photoadaptation at the leaf level.

Journal

Plant Cell & EnvironmentWiley

Published: Nov 1, 1993

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off