Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to direct neurite growth

Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to... Developing and regenerating neurites respond to a variety of biophysical and biochemical cues in their micro‐environment to reach target cells and establish appropriate synapses. Defining the hierarchal relationship of both types of cues to direct neurite growth carries broad significance for neural development, regeneration, and, in particular, engineering of neural prostheses that improve tissue integration with native neural networks. In this work, chemorepulsive biochemical borders are established on substrates with a range of surface microfeatures to determine the potential of physical cues to overcome conflicting biochemical cues. Physical micropatterns are fabricated using photomasking techniques to spatially control photoinitiation events of the polymerization. Temporal control of the reaction allows for generation of microfeatures with the same amplitude across a range of feature frequencies or periodicities. The micropatterned substrates are then modified with repulsive chemical borders between laminin and either EphA4‐Fc or tenascin C that compete with the surface microfeatures to direct neurite growth. Behaviour of neurites from spiral ganglion and trigeminal neurons is characterized at biochemical borders as cross, turn, stop, or repel events. Both the chemical borders and physical patterns significantly influence neurite pathfinding. On unpatterned surfaces, most neurites that originate on laminin are deterred by the border with tenascin C or EphA4‐Fc. Importantly, substrates with frequent micropattern features overcome the influence of the chemorepulsive border to dominate neurite trajectory. Designing prosthesis interfaces with appropriate surface features may allow for spatially organized neurite outgrowth in vivo even in the presence of conflicting biochemical cues in native target tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to direct neurite growth

Loading next page...
 
/lp/wiley/photopolymerized-micropatterns-with-high-feature-frequencies-overcome-uI5CTp8hZ2
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2527
Publisher site
See Article on Publisher Site

Abstract

Developing and regenerating neurites respond to a variety of biophysical and biochemical cues in their micro‐environment to reach target cells and establish appropriate synapses. Defining the hierarchal relationship of both types of cues to direct neurite growth carries broad significance for neural development, regeneration, and, in particular, engineering of neural prostheses that improve tissue integration with native neural networks. In this work, chemorepulsive biochemical borders are established on substrates with a range of surface microfeatures to determine the potential of physical cues to overcome conflicting biochemical cues. Physical micropatterns are fabricated using photomasking techniques to spatially control photoinitiation events of the polymerization. Temporal control of the reaction allows for generation of microfeatures with the same amplitude across a range of feature frequencies or periodicities. The micropatterned substrates are then modified with repulsive chemical borders between laminin and either EphA4‐Fc or tenascin C that compete with the surface microfeatures to direct neurite growth. Behaviour of neurites from spiral ganglion and trigeminal neurons is characterized at biochemical borders as cross, turn, stop, or repel events. Both the chemical borders and physical patterns significantly influence neurite pathfinding. On unpatterned surfaces, most neurites that originate on laminin are deterred by the border with tenascin C or EphA4‐Fc. Importantly, substrates with frequent micropattern features overcome the influence of the chemorepulsive border to dominate neurite trajectory. Designing prosthesis interfaces with appropriate surface features may allow for spatially organized neurite outgrowth in vivo even in the presence of conflicting biochemical cues in native target tissues.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial