Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro.

Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat... 1. The actions of serotonin (5‐HT) on pyramidal cells of the CA1 region of the rat hippocampus were characterized using intracellular recording in in vitro brain slices. 2. 5‐HT typically evokes a biphasic response consisting of a hyperpolarization which is followed by a longer‐lasting depolarization. These effects on membrane potential are accompanied by a decrease in the calcium‐activated after‐hyperpolarization (a.h.p). 3. Detailed analysis using 5‐HT antagonists and agonists indicates that the hyperpolarization is mediated by a 5‐HT1A receptor. Spiperone is the most effective antagonist of the response and the selective 5‐HT1A agonist, 8‐OHDPAT, behaves as a partial agonist at this receptor. In agreement with the distribution of 5‐HT1A binding sites, responses to 5‐HT were most prominent in the stratum radiatum. 4. The hyperpolarizing response is associated with a decrease in input resistance, is blocked by extracellular barium and intracellular caesium, is unaffected by the chloride gradient, and its reversal potential shifts with the extracellular concentration of potassium as predicted for a response mediated by a selective increase in potassium permeability. 5. The depolarizing response and reduction in the a.h.p. could be studied in isolation by blocking the hyperpolarizing response with either pertussis toxin or spiperone. The pharmacology of these responses did not correspond to that of any of the 5‐HT binding sites reported in C.N.S. tissue. Although the depolarization and blockade of the a.h.p. have the same time course it is unclear if they are mediated by the same or different receptors. 6. The depolarization most likely results from a decrease in resting potassium conductance. However, neither a blockade of the M current nor the a.h.p. current can account for the depolarization. 7. Blockade of phosphodiesterase activity by 3‐isobutyl‐1‐methylxanthine (IBMX) did not enhance the depressant action of 5‐HT on the a.h.p., making it unlikely that this action is mediated by cyclic AMP. 8. Blockade of the a.h.p. by 5‐HT reduces spike frequency adaptation and counteracts the inhibitory action of 5‐HT on 5‐HT1A receptors. This excitatory action outlasts the hyperpolarizing action. 9. In summary 5‐HT acts on at least two distinct receptors on hippocampal pyramidal cells, one coupled to the opening of potassium channels and a second coupled to a decrease in a resting potassium conductance and a decrease in the a.h.p. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro.

The Journal of Physiology, Volume 394 (1) – Dec 1, 1987

Loading next page...
 
/lp/wiley/pharmacologically-distinct-actions-of-serotonin-on-single-pyramidal-ZY7UXXeUha
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
DOI
10.1113/jphysiol.1987.sp016862
Publisher site
See Article on Publisher Site

Abstract

1. The actions of serotonin (5‐HT) on pyramidal cells of the CA1 region of the rat hippocampus were characterized using intracellular recording in in vitro brain slices. 2. 5‐HT typically evokes a biphasic response consisting of a hyperpolarization which is followed by a longer‐lasting depolarization. These effects on membrane potential are accompanied by a decrease in the calcium‐activated after‐hyperpolarization (a.h.p). 3. Detailed analysis using 5‐HT antagonists and agonists indicates that the hyperpolarization is mediated by a 5‐HT1A receptor. Spiperone is the most effective antagonist of the response and the selective 5‐HT1A agonist, 8‐OHDPAT, behaves as a partial agonist at this receptor. In agreement with the distribution of 5‐HT1A binding sites, responses to 5‐HT were most prominent in the stratum radiatum. 4. The hyperpolarizing response is associated with a decrease in input resistance, is blocked by extracellular barium and intracellular caesium, is unaffected by the chloride gradient, and its reversal potential shifts with the extracellular concentration of potassium as predicted for a response mediated by a selective increase in potassium permeability. 5. The depolarizing response and reduction in the a.h.p. could be studied in isolation by blocking the hyperpolarizing response with either pertussis toxin or spiperone. The pharmacology of these responses did not correspond to that of any of the 5‐HT binding sites reported in C.N.S. tissue. Although the depolarization and blockade of the a.h.p. have the same time course it is unclear if they are mediated by the same or different receptors. 6. The depolarization most likely results from a decrease in resting potassium conductance. However, neither a blockade of the M current nor the a.h.p. current can account for the depolarization. 7. Blockade of phosphodiesterase activity by 3‐isobutyl‐1‐methylxanthine (IBMX) did not enhance the depressant action of 5‐HT on the a.h.p., making it unlikely that this action is mediated by cyclic AMP. 8. Blockade of the a.h.p. by 5‐HT reduces spike frequency adaptation and counteracts the inhibitory action of 5‐HT on 5‐HT1A receptors. This excitatory action outlasts the hyperpolarizing action. 9. In summary 5‐HT acts on at least two distinct receptors on hippocampal pyramidal cells, one coupled to the opening of potassium channels and a second coupled to a decrease in a resting potassium conductance and a decrease in the a.h.p.

Journal

The Journal of PhysiologyWiley

Published: Dec 1, 1987

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off