Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones.

Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in... 1. Spinal cord and hippocampal neurones in cell culture were voltage clamped using the tight‐seal, whole‐cell recording technique. The concentration of sodium and a series of divalent cations in the extracellular media was varied to study permeation through excitatory amino acid receptor channels activated by the selective agonists N‐methyl‐D‐aspartic acid (NMDA), kainic acid and quisqualic acid. 2. On raising the extracellular calcium concentration, with (Na+)o held constant at 105 mM, the reversal potential of responses to NMDA shifted in the depolarizing direction. This shift was adequately described by the extended constant‐field equation over the range 0.3‐50 mM‐calcium. Using ionic activity coefficients we calculate a value of PCa/PNa = 10.6. Under the same experimental conditions the reversal potential of responses to kainic and quisqualic acids was much less affected by raising the calcium concentration, such that PCa/PNa = 0.15. A depolarizing shift of the NMDA reversal potential was also recorded during application of 20 mM‐barium, strontium or manganese, suggesting permeation of these ions. The permeability sequence was Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mn2+. No depolarizing shift of the NMDA reversal potential occurred during application of 20 mM‐cobalt, magnesium or nickel. 3. In experiments in which the extracellular Na+ concentration was varied the extended constant‐field equation was adequate in predicting shifts of the NMDA reversal potential recorded on varying (Na+)o over the range 50‐150 mM, but failed to accurately predict the reversal potential of responses to NMDA with 10 mM‐(Ca2+)o and only 10 or 20 mM‐(Na+)o. These results imply an apparent increase in PCa/PNa on lowering (Na+)o and may result from interaction of permeant ions within the channel. 4. Barium and to a lesser extent calcium, but not strontium (all 20 mM), reduced the slope conductance of responses to NMDA recorded within +/‐ 15 mV of the reversal potential; over this limited range of membrane potential the current‐voltage relationship remained linear in the presence of each of these ions. In contrast manganese produced a strong, voltage‐dependent block of responses to NMDA, similar to that produced by magnesium, such that even close to the reversal potential the NMDA current‐voltage relationship was highly non‐linear. Thus manganese both permeates and blocks the NMDA receptor channel. 5. Raising the extracellular calcium concentration, from 0.1 to 5 mM, had two effects on the conductance mechanism activated by NMDA.(ABSTRACT TRUNCATED AT 400 WORDS) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones.

The Journal of Physiology, Volume 394 (1) – Dec 1, 1987

Loading next page...
 
/lp/wiley/permeation-and-block-of-n-methyl-d-aspartic-acid-receptor-channels-by-la0iTCHvj3
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
DOI
10.1113/jphysiol.1987.sp016883
Publisher site
See Article on Publisher Site

Abstract

1. Spinal cord and hippocampal neurones in cell culture were voltage clamped using the tight‐seal, whole‐cell recording technique. The concentration of sodium and a series of divalent cations in the extracellular media was varied to study permeation through excitatory amino acid receptor channels activated by the selective agonists N‐methyl‐D‐aspartic acid (NMDA), kainic acid and quisqualic acid. 2. On raising the extracellular calcium concentration, with (Na+)o held constant at 105 mM, the reversal potential of responses to NMDA shifted in the depolarizing direction. This shift was adequately described by the extended constant‐field equation over the range 0.3‐50 mM‐calcium. Using ionic activity coefficients we calculate a value of PCa/PNa = 10.6. Under the same experimental conditions the reversal potential of responses to kainic and quisqualic acids was much less affected by raising the calcium concentration, such that PCa/PNa = 0.15. A depolarizing shift of the NMDA reversal potential was also recorded during application of 20 mM‐barium, strontium or manganese, suggesting permeation of these ions. The permeability sequence was Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mn2+. No depolarizing shift of the NMDA reversal potential occurred during application of 20 mM‐cobalt, magnesium or nickel. 3. In experiments in which the extracellular Na+ concentration was varied the extended constant‐field equation was adequate in predicting shifts of the NMDA reversal potential recorded on varying (Na+)o over the range 50‐150 mM, but failed to accurately predict the reversal potential of responses to NMDA with 10 mM‐(Ca2+)o and only 10 or 20 mM‐(Na+)o. These results imply an apparent increase in PCa/PNa on lowering (Na+)o and may result from interaction of permeant ions within the channel. 4. Barium and to a lesser extent calcium, but not strontium (all 20 mM), reduced the slope conductance of responses to NMDA recorded within +/‐ 15 mV of the reversal potential; over this limited range of membrane potential the current‐voltage relationship remained linear in the presence of each of these ions. In contrast manganese produced a strong, voltage‐dependent block of responses to NMDA, similar to that produced by magnesium, such that even close to the reversal potential the NMDA current‐voltage relationship was highly non‐linear. Thus manganese both permeates and blocks the NMDA receptor channel. 5. Raising the extracellular calcium concentration, from 0.1 to 5 mM, had two effects on the conductance mechanism activated by NMDA.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal

The Journal of PhysiologyWiley

Published: Dec 1, 1987

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off