Performance of Solar Proxy Options of IRI‐Plas Model for Equinox Seasons

Performance of Solar Proxy Options of IRI‐Plas Model for Equinox Seasons International Reference Ionosphere (IRI) is the most acclaimed climatic model of the ionosphere. Since 2009, the range of the IRI model has been extended to the Global Positioning System (GPS) orbital height of 20,000 km in the plasmasphere. The new model, which is called IRI extended to Plasmasphere (IRI‐Plas), can input not only the ionosonde foF2 and hmF2 but also the GPS‐total electron content (TEC). IRI‐Plas has been provided at www.ionolab.org, where online computation of ionospheric parameters is accomplished through a user‐friendly interface. The solar proxies that are available in IRI‐Plas can be listed as sunspot number (SSN1), SSN2, F10.7, global electron content (GEC), TEC, IG, Mg II, Lyman‐α, and GEC_RZ. In this study, ionosonde foF2 data are compared with IRI‐Plas foF2 values with the Consultative Committee International Radio (CCIR) and International Union of Radio Science (URSI) model choices for each solar proxy, with or without the GPS‐TEC input for the equinox months of October 2011 and March 2015. It has been observed that the best fitting model choices in Root Mean Square (RMS) and Normalized RMS (NRMS) sense are the Jet Propulsion Laboratory global ionospheric maps‐TEC input with Lyman‐α solar proxy option for both months. The input of TEC definitely lowers the difference between the model and ionosonde foF2 values. The IG and Mg II solar proxies produce similar model foF2 values, and they usually are the second and third best fits to the ionosonde foF2 for the midlatitude ionosphere. In high‐latitude regions, Jet Propulsion Laboratory global ionospheric map‐TEC inputs to IRI‐Plas with Lyman‐α, GEC_RZ, and TEC solar proxies are the best choices. In equatorial region, the best fitting solar proxies are IG, Lyman‐α, and Mg II. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Space Physics Wiley

Performance of Solar Proxy Options of IRI‐Plas Model for Equinox Seasons

Loading next page...
 
/lp/wiley/performance-of-solar-proxy-options-of-iri-plas-model-for-equinox-dJ9SIcfnwK
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-9380
eISSN
2169-9402
D.O.I.
10.1002/2017JA024994
Publisher site
See Article on Publisher Site

Abstract

International Reference Ionosphere (IRI) is the most acclaimed climatic model of the ionosphere. Since 2009, the range of the IRI model has been extended to the Global Positioning System (GPS) orbital height of 20,000 km in the plasmasphere. The new model, which is called IRI extended to Plasmasphere (IRI‐Plas), can input not only the ionosonde foF2 and hmF2 but also the GPS‐total electron content (TEC). IRI‐Plas has been provided at www.ionolab.org, where online computation of ionospheric parameters is accomplished through a user‐friendly interface. The solar proxies that are available in IRI‐Plas can be listed as sunspot number (SSN1), SSN2, F10.7, global electron content (GEC), TEC, IG, Mg II, Lyman‐α, and GEC_RZ. In this study, ionosonde foF2 data are compared with IRI‐Plas foF2 values with the Consultative Committee International Radio (CCIR) and International Union of Radio Science (URSI) model choices for each solar proxy, with or without the GPS‐TEC input for the equinox months of October 2011 and March 2015. It has been observed that the best fitting model choices in Root Mean Square (RMS) and Normalized RMS (NRMS) sense are the Jet Propulsion Laboratory global ionospheric maps‐TEC input with Lyman‐α solar proxy option for both months. The input of TEC definitely lowers the difference between the model and ionosonde foF2 values. The IG and Mg II solar proxies produce similar model foF2 values, and they usually are the second and third best fits to the ionosonde foF2 for the midlatitude ionosphere. In high‐latitude regions, Jet Propulsion Laboratory global ionospheric map‐TEC inputs to IRI‐Plas with Lyman‐α, GEC_RZ, and TEC solar proxies are the best choices. In equatorial region, the best fitting solar proxies are IG, Lyman‐α, and Mg II.

Journal

Journal of Geophysical Research: Space PhysicsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off