Pd immobilized on polyamide based on melamine and terephalic acid as an efficient and recyclable catalyst for Suzuki‐Miyaura coupling reaction

Pd immobilized on polyamide based on melamine and terephalic acid as an efficient and recyclable... A simple synthetic strategy of polyamide was described from melamine and terephalic acid via one‐step polycondensation. PdCl2 was then immobilized on the polyamide (denoted as Pd/MPA). Melamine and terephalic acid not only acted as monomers but also provided the ligand sites to help the polyamide to coordinate with Pd(II). The Pd/MPA catalyst was characterized by FT‐IR, TGA, SEM, TEM, XPS, N2 adsorption‐desorption and atomic absorption spectroscopy. The catalyst was used in Suzuki‐Miyaura coupling reaction of various aryl halides, including less reactive chlorobenzene and benzyl chloride, to give the coupling products in moderate to excellent yields. High turnover frequencies (TOF) up to 29400 h‐1 can be also obtained. In addition, it behaved truly as a heterogeneous catalyst with high reusability after being recycled 6 times and palladium leaching was negligible during the process. This work provides a practical polyamide support to develop heterogeneous palladium catalysts with simple synthetic procedure and low cost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Pd immobilized on polyamide based on melamine and terephalic acid as an efficient and recyclable catalyst for Suzuki‐Miyaura coupling reaction

Loading next page...
 
/lp/wiley/pd-immobilized-on-polyamide-based-on-melamine-and-terephalic-acid-as-AU0nNpAIn7
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4135
Publisher site
See Article on Publisher Site

Abstract

A simple synthetic strategy of polyamide was described from melamine and terephalic acid via one‐step polycondensation. PdCl2 was then immobilized on the polyamide (denoted as Pd/MPA). Melamine and terephalic acid not only acted as monomers but also provided the ligand sites to help the polyamide to coordinate with Pd(II). The Pd/MPA catalyst was characterized by FT‐IR, TGA, SEM, TEM, XPS, N2 adsorption‐desorption and atomic absorption spectroscopy. The catalyst was used in Suzuki‐Miyaura coupling reaction of various aryl halides, including less reactive chlorobenzene and benzyl chloride, to give the coupling products in moderate to excellent yields. High turnover frequencies (TOF) up to 29400 h‐1 can be also obtained. In addition, it behaved truly as a heterogeneous catalyst with high reusability after being recycled 6 times and palladium leaching was negligible during the process. This work provides a practical polyamide support to develop heterogeneous palladium catalysts with simple synthetic procedure and low cost.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off