Parasites driving host diversity: Incidence of disease correlated with Daphnia clonal turnover*

Parasites driving host diversity: Incidence of disease correlated with Daphnia clonal turnover* According to the Red Queen hypothesis, clonal diversity in asexual populations could be maintained by negative frequency‐dependant selection by coevolving parasites. If common clones are selected against and rare clones gain a concomitant advantage, we expect that clonal turnover should be faster during parasite epidemics than between them. We tested this hypothesis exploring field data of the Daphnia–Caullerya host–parasite system. The clonal make‐up and turnover of the Daphnia host population was tracked with high temporal resolution from 1998 until 2013, using first allozyme and later microsatellite markers. Significant differences in the clonal composition between random and infected subsamples of Daphnia populations were detected on six of seven tested occasions, confirming genetic specificity of the host–parasite interaction in this system. We used time series analysis to compare the rates of host clonal turnover to the incidence of parasitism, and found that Caullerya prevalence was significantly associated with microsatellite‐based clonal turnover. As alternate hypotheses, we further tested whether turnover was related to a variety of biotic, abiotic, and host demographic parameters. Other significant correlates of turnover were cyanobacterial biomass and (weakly) temperature. Overall, parasitism seems to be a strong driver of host clonal turnover, in support of the Red Queen hypothesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolution Wiley

Parasites driving host diversity: Incidence of disease correlated with Daphnia clonal turnover*

Loading next page...
 
/lp/wiley/parasites-driving-host-diversity-incidence-of-disease-correlated-with-QmzOzTFIHI
Publisher
Wiley
Copyright
Copyright © 2018, Society for the Study of Evolution
ISSN
0014-3820
eISSN
1558-5646
D.O.I.
10.1111/evo.13413
Publisher site
See Article on Publisher Site

Abstract

According to the Red Queen hypothesis, clonal diversity in asexual populations could be maintained by negative frequency‐dependant selection by coevolving parasites. If common clones are selected against and rare clones gain a concomitant advantage, we expect that clonal turnover should be faster during parasite epidemics than between them. We tested this hypothesis exploring field data of the Daphnia–Caullerya host–parasite system. The clonal make‐up and turnover of the Daphnia host population was tracked with high temporal resolution from 1998 until 2013, using first allozyme and later microsatellite markers. Significant differences in the clonal composition between random and infected subsamples of Daphnia populations were detected on six of seven tested occasions, confirming genetic specificity of the host–parasite interaction in this system. We used time series analysis to compare the rates of host clonal turnover to the incidence of parasitism, and found that Caullerya prevalence was significantly associated with microsatellite‐based clonal turnover. As alternate hypotheses, we further tested whether turnover was related to a variety of biotic, abiotic, and host demographic parameters. Other significant correlates of turnover were cyanobacterial biomass and (weakly) temperature. Overall, parasitism seems to be a strong driver of host clonal turnover, in support of the Red Queen hypothesis.

Journal

EvolutionWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off