p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression

p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression Malignant glioma is one of the deadliest types of cancer. Understanding how the cell of origin progressively evolves toward malignancy in greater detail could provide mechanistic insights and lead to novel concepts for tumor prevention and therapy. Previously we have identified oligodendrocyte precursor cell (OPC) as the cell of origin for glioma following the concurrent deletion of p53 and NF1 using a mouse genetic mosaic system that can reveal mutant cells prior to malignancy. In the current study, we set out to deconstruct the gliomagenic process in two aspects. First, we determined how the individual loss of p53 or NF1 contributes to aberrant behaviors of OPCs. Second, we determined how signaling aberrations in OPCs progressively change from pre‐malignant to transformed stages. We found that while the deletion of NF1 leads to mutant OPC expansion through increased proliferation and decreased differentiation, the deletion of p53 impairs OPC senescence. Signaling analysis showed that, while PI3K and MEK pathways go through stepwise over‐activation, mTOR signaling remains at the basal level in pre‐transforming mutant OPCs but is abruptly up‐regulated in tumor OPCs. Finally, inhibiting mTOR via pharmacological or genetic methods, led to a significant blockade of gliomagenesis but had little impact on pre‐transforming mutant OPCs, suggesting that mTOR is necessary for final transformation but not early progression. In summary, our findings show that deconstructing the tumorigenic process reveals specific aberrations caused by individual gene mutations and altered signaling events at precise timing during tumor progression, which may shed light on tumor‐prevention strategies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glia Wiley

p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression

Loading next page...
 
/lp/wiley/p53-and-nf-1-loss-plays-distinct-but-complementary-roles-in-glioma-pAf4cE5exM
Publisher
Wiley
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0894-1491
eISSN
1098-1136
D.O.I.
10.1002/glia.23297
Publisher site
See Article on Publisher Site

Abstract

Malignant glioma is one of the deadliest types of cancer. Understanding how the cell of origin progressively evolves toward malignancy in greater detail could provide mechanistic insights and lead to novel concepts for tumor prevention and therapy. Previously we have identified oligodendrocyte precursor cell (OPC) as the cell of origin for glioma following the concurrent deletion of p53 and NF1 using a mouse genetic mosaic system that can reveal mutant cells prior to malignancy. In the current study, we set out to deconstruct the gliomagenic process in two aspects. First, we determined how the individual loss of p53 or NF1 contributes to aberrant behaviors of OPCs. Second, we determined how signaling aberrations in OPCs progressively change from pre‐malignant to transformed stages. We found that while the deletion of NF1 leads to mutant OPC expansion through increased proliferation and decreased differentiation, the deletion of p53 impairs OPC senescence. Signaling analysis showed that, while PI3K and MEK pathways go through stepwise over‐activation, mTOR signaling remains at the basal level in pre‐transforming mutant OPCs but is abruptly up‐regulated in tumor OPCs. Finally, inhibiting mTOR via pharmacological or genetic methods, led to a significant blockade of gliomagenesis but had little impact on pre‐transforming mutant OPCs, suggesting that mTOR is necessary for final transformation but not early progression. In summary, our findings show that deconstructing the tumorigenic process reveals specific aberrations caused by individual gene mutations and altered signaling events at precise timing during tumor progression, which may shed light on tumor‐prevention strategies.

Journal

GliaWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off