Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP

Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp... Oxygen isotope variations spanning the last glacial cycle and the Holocene derived from ice‐core records for six sites in Greenland (Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP) show strong similarities. This suggests that the dominant influence on oxygen isotope variations reflected in the ice‐sheet records was regional climatic change. Differences in detail between the records probably reflect the effects of basal deformation in the ice as well as geographical gradients in atmospheric isotope ratios. Palaeotemperature estimates have been obtained from the records using three approaches: (i) inferences based on the measured relationship between mean annual δ18O of snow and of mean annual surface temperature over Greenland; (ii) modelled inversion of the borehole temperature profile constrained either by the dated isotopic profile, or (iii) by using Monte Carlo simulation techniques. The third of these approaches was adopted to reconstruct Holocene temperature variations for the Dye 3 and GRIP temperature profiles, which yields remarkably compatible results. A new record of Holocene isotope variations obtained from the NorthGRIP ice‐core matches the GRIP short‐term isotope record, and also shows similar long‐term trends to the Dye‐3 and GRIP inverted temperature data. The NorthGRIP isotope record reflects: (i) a generally stronger isotopic signal than is found in the GRIP record; (ii) several short‐lived temperature fluctuations during the first 1500 yr of the Holocene; (iii) a marked cold event at ca. 8.2 ka (the ‘8.2 ka event’); (iv) optimum temperatures for the Holocene between ca. 8.6 and 4.3 ka, a signal that is 0.6‰ stronger than for the GRIP profile; (v) a clear signal for the Little Ice Age; and (vi) a clear signal of climate warming during the last century. These data suggest that the NorthGRIP stable isotope record responded in a sensitive manner to temperature fluctuations during the Holocene. Copyright © 2001 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Quaternary Science Wiley

Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP

Loading next page...
 
/lp/wiley/oxygen-isotope-and-palaeotemperature-records-from-six-greenland-ice-NcDH9GV4lM
Publisher
Wiley
Copyright
Copyright © 2001 John Wiley & Sons, Ltd.
ISSN
0267-8179
eISSN
1099-1417
D.O.I.
10.1002/jqs.622
Publisher site
See Article on Publisher Site

Abstract

Oxygen isotope variations spanning the last glacial cycle and the Holocene derived from ice‐core records for six sites in Greenland (Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP) show strong similarities. This suggests that the dominant influence on oxygen isotope variations reflected in the ice‐sheet records was regional climatic change. Differences in detail between the records probably reflect the effects of basal deformation in the ice as well as geographical gradients in atmospheric isotope ratios. Palaeotemperature estimates have been obtained from the records using three approaches: (i) inferences based on the measured relationship between mean annual δ18O of snow and of mean annual surface temperature over Greenland; (ii) modelled inversion of the borehole temperature profile constrained either by the dated isotopic profile, or (iii) by using Monte Carlo simulation techniques. The third of these approaches was adopted to reconstruct Holocene temperature variations for the Dye 3 and GRIP temperature profiles, which yields remarkably compatible results. A new record of Holocene isotope variations obtained from the NorthGRIP ice‐core matches the GRIP short‐term isotope record, and also shows similar long‐term trends to the Dye‐3 and GRIP inverted temperature data. The NorthGRIP isotope record reflects: (i) a generally stronger isotopic signal than is found in the GRIP record; (ii) several short‐lived temperature fluctuations during the first 1500 yr of the Holocene; (iii) a marked cold event at ca. 8.2 ka (the ‘8.2 ka event’); (iv) optimum temperatures for the Holocene between ca. 8.6 and 4.3 ka, a signal that is 0.6‰ stronger than for the GRIP profile; (v) a clear signal for the Little Ice Age; and (vi) a clear signal of climate warming during the last century. These data suggest that the NorthGRIP stable isotope record responded in a sensitive manner to temperature fluctuations during the Holocene. Copyright © 2001 John Wiley & Sons, Ltd.

Journal

Journal of Quaternary ScienceWiley

Published: May 1, 2001

References

  • An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice‐core record: a proposal by the INTIMATE group
    Björck, Björck; Walker, Walker; Cwynar, Cwynar; Johnsen, Johnsen; Knudsen, Knudsen; Lowe, Lowe; Wohlfarth, Wohlfarth
  • Studies of the Antarctic climate with a stretched‐grid general circulation model
    Krinner, Krinner; Genthon, Genthon; Li, Li
  • Borehole versus isotope temperatures on Greenland: seasonality does matter
    Werner, Werner; Mikolajewicz, Mikolajewicz; Heimann, Heimann; Hoffmann, Hoffmann

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off