Oxidative Stress and Motor Neurone Disease

Oxidative Stress and Motor Neurone Disease The effects of oxidative stress within post mitotic cells such as neurones may be cumulative, and injury by free radical species is a major potential cause of the age‐related deterioration in neuronal function seen in several neurodegenerative diseases. There is strong evidence that oxidative stress plays an important role in the pathogenesis of motor neurone disease (MND). Point mutations in the antioxidant enzyme Cu, Zn superoxide dismutase (SOD1) are found in some pedigrees with the familial form of MND. How mutations in this ubiquitous enzyme cause the relatively selective cell death of specific groups of motor neurones is not clear, although a number of hypotheses have been forwarded. These include (1) the formation of hydroxyl radicals, (2) the catalysis of reactions of the nitrogen centred oxidant species peroxynitrite, (3) toxicity of copper or zinc and (4) protein aggregation. Some experimental support for these different hypotheses has been produced by manipulating cells in culture to express the mutant SOD1 proteins and by generating transgenic mice which over‐express mutant SOD1. Observations in these model systems are, in some cases at least, supported by observations made on pathological material from patients with similar SOD1 mutations. Furthermore, there are reports of evidence of free radical mediated damage to neurones in the sporadic form of MND. Several lines of evidence suggest that alterations in the glutamatergic neurotransmitter system may also play a key role in the injury to motor neurones in sporadic MND. There are several important subcellular targets, which may be preferentially impaired within motor neurones, including neurofilament proteins and mitochondria. Future research will need to identify the aspects of the molecular and physiological phenotype of human motor neurones that makes them susceptible to degeneration in MND, and to identify those genetic and environmental factors which combine to cause this disease in individuals and in familial pedigrees. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Pathology Wiley

Oxidative Stress and Motor Neurone Disease

Brain Pathology, Volume 9 (1) – Jan 1, 1999

Loading next page...
 
/lp/wiley/oxidative-stress-and-motor-neurone-disease-0LVVOKxIwI
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1015-6305
eISSN
1750-3639
DOI
10.1111/j.1750-3639.1999.tb00217.x
Publisher site
See Article on Publisher Site

Abstract

The effects of oxidative stress within post mitotic cells such as neurones may be cumulative, and injury by free radical species is a major potential cause of the age‐related deterioration in neuronal function seen in several neurodegenerative diseases. There is strong evidence that oxidative stress plays an important role in the pathogenesis of motor neurone disease (MND). Point mutations in the antioxidant enzyme Cu, Zn superoxide dismutase (SOD1) are found in some pedigrees with the familial form of MND. How mutations in this ubiquitous enzyme cause the relatively selective cell death of specific groups of motor neurones is not clear, although a number of hypotheses have been forwarded. These include (1) the formation of hydroxyl radicals, (2) the catalysis of reactions of the nitrogen centred oxidant species peroxynitrite, (3) toxicity of copper or zinc and (4) protein aggregation. Some experimental support for these different hypotheses has been produced by manipulating cells in culture to express the mutant SOD1 proteins and by generating transgenic mice which over‐express mutant SOD1. Observations in these model systems are, in some cases at least, supported by observations made on pathological material from patients with similar SOD1 mutations. Furthermore, there are reports of evidence of free radical mediated damage to neurones in the sporadic form of MND. Several lines of evidence suggest that alterations in the glutamatergic neurotransmitter system may also play a key role in the injury to motor neurones in sporadic MND. There are several important subcellular targets, which may be preferentially impaired within motor neurones, including neurofilament proteins and mitochondria. Future research will need to identify the aspects of the molecular and physiological phenotype of human motor neurones that makes them susceptible to degeneration in MND, and to identify those genetic and environmental factors which combine to cause this disease in individuals and in familial pedigrees.

Journal

Brain PathologyWiley

Published: Jan 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off