Oxidative stress and inflammation mediate the effect of air pollution on cardio‐ and cerebrovascular disease: A prospective study in nonsmokers

Oxidative stress and inflammation mediate the effect of air pollution on cardio‐ and... Air pollution is associated with a broad range of adverse health effects, including mortality and morbidity due to cardio‐ and cerebrovascular diseases (CCVD), but the molecular mechanisms involved are not entirely understood. This study aims to investigate the involvement of oxidative stress and inflammation in the causal chain, and to identify intermediate biomarkers that are associated retrospectively with the exposure and prospectively with the disease. We designed a case‐control study on CCVD nested in a cohort of 18,982 individuals from the EPIC‐Italy study. We measured air pollution, inflammatory biomarkers, and whole‐genome DNA methylation in blood collected up to 17 years before the diagnosis. The study sample includes all the incident CCVD cases among former‐ and never‐smokers, with available stored blood sample, that arose in the cohort during the follow‐up. We identified enrichment of altered DNA methylation in “ROS/Glutathione/Cytotoxic granules” and “Cytokine signaling” pathways related genes, associated with both air pollution (multiple comparisons adjusted p for enrichment ranging from 0.01 to 0.03 depending on pollutant) and with CCVD risk (P = 0.04 and P = 0.03, respectively). Also, Interleukin‐17 was associated with higher exposure to NO2 (P = 0.0004), NOx (P = 0.0005), and CCVD risk (OR = 1.79; CI 1.04–3.11; P = 0.04 comparing extreme tertiles). Our findings indicate that chronic exposure to air pollution can lead to oxidative stress, which in turn activates a cascade of inflammatory responses mainly involving the “Cytokine signaling” pathway, leading to increased risk of CCVD. Inflammatory proteins and DNA methylation alterations can be detected several years before CCVD diagnosis in blood samples, being promising preclinical biomarkers. Environ. Mol. Mutagen. 59:234–246, 2018. © 2017 Wiley Periodicals, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental and Molecular Mutagenesis Wiley
Loading next page...
 
/lp/wiley/oxidative-stress-and-inflammation-mediate-the-effect-of-air-pollution-VdNfFHhswn
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0893-6692
eISSN
1098-2280
D.O.I.
10.1002/em.22153
Publisher site
See Article on Publisher Site

Abstract

Air pollution is associated with a broad range of adverse health effects, including mortality and morbidity due to cardio‐ and cerebrovascular diseases (CCVD), but the molecular mechanisms involved are not entirely understood. This study aims to investigate the involvement of oxidative stress and inflammation in the causal chain, and to identify intermediate biomarkers that are associated retrospectively with the exposure and prospectively with the disease. We designed a case‐control study on CCVD nested in a cohort of 18,982 individuals from the EPIC‐Italy study. We measured air pollution, inflammatory biomarkers, and whole‐genome DNA methylation in blood collected up to 17 years before the diagnosis. The study sample includes all the incident CCVD cases among former‐ and never‐smokers, with available stored blood sample, that arose in the cohort during the follow‐up. We identified enrichment of altered DNA methylation in “ROS/Glutathione/Cytotoxic granules” and “Cytokine signaling” pathways related genes, associated with both air pollution (multiple comparisons adjusted p for enrichment ranging from 0.01 to 0.03 depending on pollutant) and with CCVD risk (P = 0.04 and P = 0.03, respectively). Also, Interleukin‐17 was associated with higher exposure to NO2 (P = 0.0004), NOx (P = 0.0005), and CCVD risk (OR = 1.79; CI 1.04–3.11; P = 0.04 comparing extreme tertiles). Our findings indicate that chronic exposure to air pollution can lead to oxidative stress, which in turn activates a cascade of inflammatory responses mainly involving the “Cytokine signaling” pathway, leading to increased risk of CCVD. Inflammatory proteins and DNA methylation alterations can be detected several years before CCVD diagnosis in blood samples, being promising preclinical biomarkers. Environ. Mol. Mutagen. 59:234–246, 2018. © 2017 Wiley Periodicals, Inc.

Journal

Environmental and Molecular MutagenesisWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off