Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia

Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia Magnetic nanoparticles (M:NPs) are unique agents for in vivo thermal therapies due to their multimodal capacity for efficient heat generation under optical and/or magnetic excitation. Nevertheless, their transfer from laboratory to the clinic is hampered by the absence of thermal feedback and by the influence that external conditions (e.g., agglomeration and biological matrix interactions) have on their heating efficiency. Overcoming these limitations requires, first, the implementation of strategies providing thermal sensing to M:NPs in order to obtain in situ thermal feedback during thermal therapies. At the same time, M:NPs should be modified so that their heating efficiency will be maintained independently of the environment and the added capability for thermometry. In this work, optomagnetic hybrid nanostructures (OMHSs) that simultaneously satisfy these two conditions are presented. Polymeric encapsulation of M:NPs with neodymium‐doped nanoparticles results in a hybrid structure capable of subtissue thermal feedback while making the heating efficiency of M:NPs independent of the medium. The potential application of the OMHSs herein developed for fully controlled thermal therapies is demonstrated by an ex vivo endoscope‐assisted controlled intracoronary heating experiment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

Loading next page...
 
/lp/wiley/optomagnetic-nanoplatforms-for-in-situ-controlled-hyperthermia-ziuCXSZm98
Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
D.O.I.
10.1002/adfm.201704434
Publisher site
See Article on Publisher Site

Abstract

Magnetic nanoparticles (M:NPs) are unique agents for in vivo thermal therapies due to their multimodal capacity for efficient heat generation under optical and/or magnetic excitation. Nevertheless, their transfer from laboratory to the clinic is hampered by the absence of thermal feedback and by the influence that external conditions (e.g., agglomeration and biological matrix interactions) have on their heating efficiency. Overcoming these limitations requires, first, the implementation of strategies providing thermal sensing to M:NPs in order to obtain in situ thermal feedback during thermal therapies. At the same time, M:NPs should be modified so that their heating efficiency will be maintained independently of the environment and the added capability for thermometry. In this work, optomagnetic hybrid nanostructures (OMHSs) that simultaneously satisfy these two conditions are presented. Polymeric encapsulation of M:NPs with neodymium‐doped nanoparticles results in a hybrid structure capable of subtissue thermal feedback while making the heating efficiency of M:NPs independent of the medium. The potential application of the OMHSs herein developed for fully controlled thermal therapies is demonstrated by an ex vivo endoscope‐assisted controlled intracoronary heating experiment.

Journal

Advanced Functional MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off