Optimal control of a slot car racer

Optimal control of a slot car racer In this contribution, we present a simulation method for the optimal control of a mechatronic system that is based on discrete variational calculus and apply it to compute the time‐minimal path of a slot car racer. Here, the DMOC (Discrete Mechanics and Optimal Control [4]) method is used to generate offline optimal trajectories for the electro‐mechanically coupled system, i.e. sequences of discrete configurations and sequences of driving voltages. The time‐minimal path is achieved by the choice of different cost functions, the sum of time steps, the negative sum of the quadratic momenta and the negative sum of the quadratic velocities. Simulation results show that the momentum formulation yields the lowest number of iterations. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Optimal control of a slot car racer

, Volume 17 (1) – Jan 1, 2017
2 pages

/lp/wiley/optimal-control-of-a-slot-car-racer-6ycr3x6SHS
Publisher
Wiley Subscription Services, Inc., A Wiley Company
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710238
Publisher site
See Article on Publisher Site

Abstract

In this contribution, we present a simulation method for the optimal control of a mechatronic system that is based on discrete variational calculus and apply it to compute the time‐minimal path of a slot car racer. Here, the DMOC (Discrete Mechanics and Optimal Control [4]) method is used to generate offline optimal trajectories for the electro‐mechanically coupled system, i.e. sequences of discrete configurations and sequences of driving voltages. The time‐minimal path is achieved by the choice of different cost functions, the sum of time steps, the negative sum of the quadratic momenta and the negative sum of the quadratic velocities. Simulation results show that the momentum formulation yields the lowest number of iterations. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations