Optically transparent aromatic poly(ester imide)s with low coefficients of thermal expansion. 2: Effect of the introduction of alkyl‐substituted p‐biphenylene units

Optically transparent aromatic poly(ester imide)s with low coefficients of thermal expansion. 2:... A series of ester‐linked tetracarboxylic dianhydrides (TA‐X) were synthesized from trimellitic anhydride chloride and 4,4′‐biphenol analogs containing different numbers and positions of methyl substituents. Aromatic poly(ester imide)s (PEsIs) were polymerized from TA‐Xs and 2,2′‐bis(trifluoromethyl)benzidine to investigate the film properties systematically. A significant substituent effect on the target properties (Tg, optical transparency, the linear coefficient of thermal expansion (CTE) and ductility) was observed. A PEsI containing 2,2′,3,3′,5,5′‐hexamethyl‐substituted p‐biphenylene units was chemically imidized in a homogeneous state. It was highly soluble at room temperature, even in less hygroscopic non‐amide solvents such as cyclopentanone (CPN), and provided a stable CPN solution with a high solid content. The CPN‐cast PEsI film was almost colorless as suggested from the rather low yellowness index (3.2), high light transmittance at 400 nm (71.5%) and very low haze (1.15%). This PEsI film also had a high Tg (294 °C, determined by thermomechanical analysis) in addition to a low CTE (21.7 ppm K−1), moderate film ductility and very low water uptake. A structural modification of the PEsI by copolymerization with a tetracarboxylic dianhydride with a rigid/linear structure was effective in further reducing the CTE while maintaining the other excellent target properties. Thus, some of the PEsIs developed in this work are promising candidates as novel plastic substrates for use in image display devices. © 2017 Society of Chemical Industry http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer International Wiley

Optically transparent aromatic poly(ester imide)s with low coefficients of thermal expansion. 2: Effect of the introduction of alkyl‐substituted p‐biphenylene units

Loading next page...
 
/lp/wiley/optically-transparent-aromatic-poly-ester-imide-s-with-low-2EpKUrxwCj
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Society of Chemical Industry
ISSN
0959-8103
eISSN
1097-0126
D.O.I.
10.1002/pi.5525
Publisher site
See Article on Publisher Site

Abstract

A series of ester‐linked tetracarboxylic dianhydrides (TA‐X) were synthesized from trimellitic anhydride chloride and 4,4′‐biphenol analogs containing different numbers and positions of methyl substituents. Aromatic poly(ester imide)s (PEsIs) were polymerized from TA‐Xs and 2,2′‐bis(trifluoromethyl)benzidine to investigate the film properties systematically. A significant substituent effect on the target properties (Tg, optical transparency, the linear coefficient of thermal expansion (CTE) and ductility) was observed. A PEsI containing 2,2′,3,3′,5,5′‐hexamethyl‐substituted p‐biphenylene units was chemically imidized in a homogeneous state. It was highly soluble at room temperature, even in less hygroscopic non‐amide solvents such as cyclopentanone (CPN), and provided a stable CPN solution with a high solid content. The CPN‐cast PEsI film was almost colorless as suggested from the rather low yellowness index (3.2), high light transmittance at 400 nm (71.5%) and very low haze (1.15%). This PEsI film also had a high Tg (294 °C, determined by thermomechanical analysis) in addition to a low CTE (21.7 ppm K−1), moderate film ductility and very low water uptake. A structural modification of the PEsI by copolymerization with a tetracarboxylic dianhydride with a rigid/linear structure was effective in further reducing the CTE while maintaining the other excellent target properties. Thus, some of the PEsIs developed in this work are promising candidates as novel plastic substrates for use in image display devices. © 2017 Society of Chemical Industry

Journal

Polymer InternationalWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off