Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction.

Optical monitoring of transmitter release and synaptic vesicle recycling at the frog... 1. Frog cutaneous pectoris motor nerve terminals were loaded with the fluorescent dye FM1‐43, which produced a series of discrete spots along the length of terminals, each spot evidently marking a cluster of synaptic vesicles. Terminals were imaged for 2‐10 min as they destained during repetitive nerve stimulation. Endplate potentials (EPPs) were recorded simultaneously from the muscle fibres innervated by these terminals; their summed amplitudes provided a measure of cumulative transmitter release. 2. Individual fluorescent spots in any one terminal varied in initial brightness but destained at similar fractional rates. 3. The rates of cumulative transmitter release and destaining increased with stimulus frequency in the range 2‐30 Hz. At 40 Hz, however, both transmitter release and destaining were slower than at 30 Hz. 4. In twenty‐six experiments, rates of dye loss and transmitter release were compared quantitatively. When the time course of summed EPPs was scaled to fit the time course of dye loss during the first 30‐60 s of destaining, the two curves usually diverged at later times, the dye loss curve falling below the summed EPP curve. Thus, assuming that dye loss and transmitter release are proportional at early times, at later times the rate of dye loss decreases relative to the rate of transmitter release. 5. At stimulus frequencies from 2 to 30 Hz, the results could be fitted by a simple model in which vesicles lose their dye during exocytosis and, after a fixed recycle ‘dead time’, they re‐enter the vesicle pool, mixing randomly with other vesicles. 6. Unlike stimulation at lower frequencies, at 40 Hz dye loss and summed EPP amplitude curves did not significantly diverge. Stimulation periods lasted up to about 2 min. Interpreted according to the model of vesicle recycling, this suggests that vesicle recycling is inhibited at 40 Hz. 7. The model led to predictions about the relative number, N, of vesicles (labelled and unlabelled) in the terminal at any time during stimulation. The calculated value of N decreased at times less than the recycle ‘dead time’, and then increased, reflecting the appearance of recycled vesicles in the vesicle pool. 8. From estimates of N and recorded EPP amplitudes, the fraction of vesicles released per shock, F, could be calculated during the entire stimulation period. At low stimulus frequencies (2‐5 Hz), after an initial rapid fall, F decreased slowly and monotonically by about 50% in 6 min. At higher stimulus frequencies, a different process was observed.(ABSTRACT TRUNCATED AT 400 WORDS) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction.

The Journal of Physiology, Volume 460 (1) – Jan 1, 1993

Loading next page...
 
/lp/wiley/optical-monitoring-of-transmitter-release-and-synaptic-vesicle-0qL0xaQ410
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
D.O.I.
10.1113/jphysiol.1993.sp019472
Publisher site
See Article on Publisher Site

Abstract

1. Frog cutaneous pectoris motor nerve terminals were loaded with the fluorescent dye FM1‐43, which produced a series of discrete spots along the length of terminals, each spot evidently marking a cluster of synaptic vesicles. Terminals were imaged for 2‐10 min as they destained during repetitive nerve stimulation. Endplate potentials (EPPs) were recorded simultaneously from the muscle fibres innervated by these terminals; their summed amplitudes provided a measure of cumulative transmitter release. 2. Individual fluorescent spots in any one terminal varied in initial brightness but destained at similar fractional rates. 3. The rates of cumulative transmitter release and destaining increased with stimulus frequency in the range 2‐30 Hz. At 40 Hz, however, both transmitter release and destaining were slower than at 30 Hz. 4. In twenty‐six experiments, rates of dye loss and transmitter release were compared quantitatively. When the time course of summed EPPs was scaled to fit the time course of dye loss during the first 30‐60 s of destaining, the two curves usually diverged at later times, the dye loss curve falling below the summed EPP curve. Thus, assuming that dye loss and transmitter release are proportional at early times, at later times the rate of dye loss decreases relative to the rate of transmitter release. 5. At stimulus frequencies from 2 to 30 Hz, the results could be fitted by a simple model in which vesicles lose their dye during exocytosis and, after a fixed recycle ‘dead time’, they re‐enter the vesicle pool, mixing randomly with other vesicles. 6. Unlike stimulation at lower frequencies, at 40 Hz dye loss and summed EPP amplitude curves did not significantly diverge. Stimulation periods lasted up to about 2 min. Interpreted according to the model of vesicle recycling, this suggests that vesicle recycling is inhibited at 40 Hz. 7. The model led to predictions about the relative number, N, of vesicles (labelled and unlabelled) in the terminal at any time during stimulation. The calculated value of N decreased at times less than the recycle ‘dead time’, and then increased, reflecting the appearance of recycled vesicles in the vesicle pool. 8. From estimates of N and recorded EPP amplitudes, the fraction of vesicles released per shock, F, could be calculated during the entire stimulation period. At low stimulus frequencies (2‐5 Hz), after an initial rapid fall, F decreased slowly and monotonically by about 50% in 6 min. At higher stimulus frequencies, a different process was observed.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal

The Journal of PhysiologyWiley

Published: Jan 1, 1993

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off