ONVisor: Towards a scalable and flexible SDN‐based network virtualization platform on ONOS

ONVisor: Towards a scalable and flexible SDN‐based network virtualization platform on ONOS Network virtualization (NV) technologies have attracted a lot of attention as an essential solution for future networking infrastructure. The NV enables multiple tenants to share the same physical infrastructure and to create independent virtual networks (VNs) by decoupling the physical network in terms of topology, address, and control functions. One feasible way to realize full NV involves considering solutions based on the software‐defined networking (SDN) paradigm using its programmability. The SDN contributes many benefits to both network operations and management including programmability, agility, elasticity, and flexibility. There are several SDN‐based NV solutions; however, they suffered from a lack of scalability, high availability. Also, they have high latency between control and data plane because of proxy‐based architecture. In this thesis, we introduce a new NV platform, named Open Network Hypervisor (ONVisor). The design objectives include, among the features, (1) multitenancy, (2) scalability, (3) flexibility, (4) isolated VNs, and (5) VN federation. ONVisor was designed and implemented by extending Open Network Operating System, an open‐source SDN controller. The main features of ONVisor are (1) isolated control and data plane per VN, (2) support of distributed operations, (3) extensible translators, (4) on‐platform VN application development and execution, and (5) support of heterogenous SDN data‐plane implementations. Several experiments are conducted on various test scenarios in different test environments in terms of control and data plane performance compared to nonvirtualized SDN network. The results show that ONVisor can provide VNs a little bit lower control plane performance and similar data plane performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Network Management Wiley

ONVisor: Towards a scalable and flexible SDN‐based network virtualization platform on ONOS

Loading next page...
 
/lp/wiley/onvisor-towards-a-scalable-and-flexible-sdn-based-network-3Su0ll5tp2
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1055-7148
eISSN
1099-1190
D.O.I.
10.1002/nem.2012
Publisher site
See Article on Publisher Site

Abstract

Network virtualization (NV) technologies have attracted a lot of attention as an essential solution for future networking infrastructure. The NV enables multiple tenants to share the same physical infrastructure and to create independent virtual networks (VNs) by decoupling the physical network in terms of topology, address, and control functions. One feasible way to realize full NV involves considering solutions based on the software‐defined networking (SDN) paradigm using its programmability. The SDN contributes many benefits to both network operations and management including programmability, agility, elasticity, and flexibility. There are several SDN‐based NV solutions; however, they suffered from a lack of scalability, high availability. Also, they have high latency between control and data plane because of proxy‐based architecture. In this thesis, we introduce a new NV platform, named Open Network Hypervisor (ONVisor). The design objectives include, among the features, (1) multitenancy, (2) scalability, (3) flexibility, (4) isolated VNs, and (5) VN federation. ONVisor was designed and implemented by extending Open Network Operating System, an open‐source SDN controller. The main features of ONVisor are (1) isolated control and data plane per VN, (2) support of distributed operations, (3) extensible translators, (4) on‐platform VN application development and execution, and (5) support of heterogenous SDN data‐plane implementations. Several experiments are conducted on various test scenarios in different test environments in terms of control and data plane performance compared to nonvirtualized SDN network. The results show that ONVisor can provide VNs a little bit lower control plane performance and similar data plane performance.

Journal

International Journal of Network ManagementWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off