Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this work, methyl methacrylate (MMA) copolymerized with cationic monomer 2‐(methacryloyloxy)ethyltrimethylammonium chloride (MTC) via in situ suspension copolymerization, meanwhile, negatively charged carboxylic multi‐walled carbon nanotubes (MWCNTs) were adsorbed through electrostatic interactions during copolymerization process to fabricate nanocomposites. The chemical structure of copolymer was analyzed by 1H nuclear magnetic resonance (1H‐NMR). The interfacial adhesion between MWCNTs and polymer matrix was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The morphologies of synthesized microspheres were observed by SEM. Finally, the mechanical properties of nanocomposites were investigated in detail. The results suggest that: the nanocomposites have been successfully synthesized by in situ suspension copolymerization; both the dispersion of MWCNTs and interfacial adhesion between MWCNTs and matrix were improved; and the mechanical properties of nanocomposites were dramatically reinforced. The nanocomposites were prepared in one step without additional treatments of MWCNTs or copolymer matrix, which makes the method relatively efficient.
Advances in Polymer Technology – Wiley
Published: Jun 1, 2018
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.