On transcritical states in viscous flow passing the edge of a horizontal plate

On transcritical states in viscous flow passing the edge of a horizontal plate This contribution puts forward some recent advances in the rigorous (asymptotic) theory of gravity‐ (and capillarity‐)driven shallow flow of a viscous liquid past a horizontal plate, originating in jet impingement oblique to it. Hence, our concern is twofold: with steady developed flow over the distance from the jet centre to the trailing edge of the plate, referred to as a pronounced hydraulic jump blurred by viscous diffusion; with the predominantly inviscid transcritical limit arising near the edge due to scale reduction given an intrinsic expansive singularity taking place there. In the latter situation envisaged briefly, condensing nonlinear inertial effects, weak time dependence, and (very) weak streamline curvature as the essential ingredients into a distinguished limit demonstrates the generation of a weak (transcritical) hydraulic jump by a plate‐mounted obstacle. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

On transcritical states in viscous flow passing the edge of a horizontal plate

Loading next page...
 
/lp/wiley/on-transcritical-states-in-viscous-flow-passing-the-edge-of-a-LLsN66BcY4
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710300
Publisher site
See Article on Publisher Site

Abstract

This contribution puts forward some recent advances in the rigorous (asymptotic) theory of gravity‐ (and capillarity‐)driven shallow flow of a viscous liquid past a horizontal plate, originating in jet impingement oblique to it. Hence, our concern is twofold: with steady developed flow over the distance from the jet centre to the trailing edge of the plate, referred to as a pronounced hydraulic jump blurred by viscous diffusion; with the predominantly inviscid transcritical limit arising near the edge due to scale reduction given an intrinsic expansive singularity taking place there. In the latter situation envisaged briefly, condensing nonlinear inertial effects, weak time dependence, and (very) weak streamline curvature as the essential ingredients into a distinguished limit demonstrates the generation of a weak (transcritical) hydraulic jump by a plate‐mounted obstacle. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial